Exercise 3.3Z: High- and Low-Pass Filters in p-Form

From LNTwww
Revision as of 15:15, 14 October 2021 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Considered four-terminal networks

The diagram shows four simple filter configurations with low-pass or high-pass characteristics,  which are composed of discrete components.

The following holds for the components of the circuits  $(1)$  and  $(2)$:

$$R = 100\,{\rm \Omega}\hspace{0.05cm},\hspace{0.2cm} L = 10\,{\rm µ H}\hspace{0.05cm}.$$
  • The four-terminal networks  $(1)$, ... , $(4)$  should be characterized by their  $p$–transfer functions  $H_{\rm L}(p)$ .
  • From this   (in this task, not in general),   the frequency response is obtained according to the equation
$$H(f) = H_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it f}} \hspace{0.05cm}.$$




Please note:



Questions

1

Which statements are true for the  $p$–transfer function of a two-port network?

The following holds for a low-pass filter of first-order:   $H_{\rm TP}(p) = K/(p + p_{\rm x})$,
The following holds for a high-pass filter of first-order:   $H_{\rm HP}(p) = K \cdot p/(p + p_{\rm x})$.

2

What are the parameters  $K$  and  $p_{\rm x}$  of the transfer function of two-port network  $(1)$?

$K \ = \ $

$p_{\rm x}\ = \ $

$\ \cdot 10^{-6}\ \rm 1/s$

3

At what frequency  $f_{\rm G}$  has the power transfer function  $|H(f)|^2$  decreased to half with respect to the maximum value?

$f_{\rm G} \ = \ $

$\ \rm MHz$

4

Which of the two  "RC two-port networks"  results in the same transfer function as the two-port network  $(1)$  if the capacitance  $C$  is chosen correctly?

Two-port network  $(3)$,
Two-port network  $(4)$.

5

Let  $R = 100 \ \rm \Omega$ hold.  How must  $C$  be chosen so that the pole  $p_{\rm x}$  coincides with that of the two-port network  $(1)$?

$C \ = \ $

$\ \rm nF$


Solution

(1)  Both statements are true:

  • The following limits hold for the two two-port networks:
$$\lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0} H_{\rm TP}(p)\hspace{0.2cm} = \hspace{0.1cm}\lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{K}{p + p_{\rm x}} \hspace{0.15cm} { =K /{p_{\rm x}}}, \hspace{1.2cm} \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty} H_{\rm TP}(p)= 0\hspace{0.05cm},$$
$$ \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}H_{\rm HP}(p) \hspace{0.2cm} = \hspace{0.1cm}0, \hspace{1.4cm} \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty} H_{\rm HP}(p)= \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}\frac{K\cdot p}{p + p_{\rm x}} = K \hspace{0.05cm}.$$
  • It can be seen that  $H_{\rm TP}(p)$  yields zero for very high frequencies and  $H_{\rm HP}(p)$  for very low frequencies.



(2)  We consider two-port network  $(1)$.

  • The voltage divider principle leads to the result
$$H_{\rm L}(p)= \frac { p L} {R + pL}= \frac { p } {p +{R}/{L}} \hspace{0.05cm} .$$
  • It is a  $\rm high–pass\:filter$  with the characteristic parameter  $\underline {K = 1}$  and the zero at
$$p_{\rm x}= -\frac{R}{L}= -\frac{100\,{\rm \Omega}}{10^{-5 }\,{\rm \Omega s}}\hspace{0.15cm}\underline{= -0.1} \cdot10^{-6 }\,{1}/{\rm s} \hspace{0.05cm} .$$



(3)  The transfer function is obtained by using the substitution  $p = {\rm j} \cdot 2 \pi f$:

$$H(f)= \frac { {\rm j} \cdot 2\pi \hspace{-0.05cm}f } {{\rm j} \cdot 2\pi \hspace{-0.05cm}f +p_{\rm x}}\Rightarrow \hspace{0.3cm}\hspace{0.3cm} |H(f)|^2 = \frac { (2\pi \hspace{-0.05cm}f)^2 } {(2\pi \hspace{-0.05cm}f)^2 +p_{\rm x}^2}\hspace{0.05cm} .$$
  • The following conditional equation is obtained from the condition  $|H(f_{\rm G})|^2 = 0.5 $ :
$$(2\pi \hspace{-0.05cm}f_{\rm G})^2 = p_{\rm x}^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.3cm} f_{\rm G} = -\frac { p_{\rm x}} {2 \pi}= \frac { 10^{-7 }\, 1/s} {2 \pi}\hspace{0.15cm}\underline{\approx 1.59\,{\rm MHz}}\hspace{0.05cm} .$$



(4)  The first statement is correct:

  • For a direct  $\rm (DC)$  signal,  a capacitance  $C$  is an infinite resistance.  For high frequencies,  $C$  acts like a short circuit.
  • From this it follows:  The two-port network  $(3)$  also describes a high-pass filter.  In contrast, the circuits  $(2)$  and  $(4)$  exhibit low-pass filter behaviour.



(5)  The $p$–transfer function of two-port network  $(3)$  is:

$$H_{\rm L}(p)= \frac { R } {{1}/{(pC)} + R}= \frac { p } {p +{1}/{(RC)}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm x}= -{1}/(RC)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} C = -\frac{1}{p_{\rm x} \cdot R}= \frac{-1}{-10^{-7 }\, 1/s \cdot 100\,{\rm \Omega}}\hspace{0.15cm}\underline{ = 1\,{\rm nF}} \hspace{0.05cm} .$$