Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"

From LNTwww
m (Text replacement - "Dirac impulse" to "Dirac delta")
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Die Charakteristika von GSM
+
{{quiz-Header|Buchseite=Mobile_Communications/Characteristics_of_GSM
 
}}
 
}}
  
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]]
+
[[File:EN_Mob_A_3_5.png|right|frame|Different signals of GMSK-Modulation]]
Das bei  GSM eingesetzte Modulationsverfahren ist  ''Gaussian Minimum Shift Keying'', kurz GMSK. Es handelt sich hierbei um eine spezielle Art von FSK (''Frequency Shift Keying'') mit CP–FSK (''kontinuierliche Phasenanpassung''), bei der
 
*der Modulationsindex den kleinsten Wert besitzt, der die Orthogonalitätsbedingung gerade noch erfüllt:   $h = 0.5$   ⇒    ''Minimum  Shift  Keying'',
 
*ein Gaußtiefpass mit der Impulsantwort  $h_{\rm G}(t)$  vor dem FSK–Modulator  eingebracht wird, mit dem Ziel, um so noch weiter Bandbreite einzusparen.
 
  
 +
The modulation method used for GSM is  "Gaussian Minimum Shift Keying",  short  $\rm GMSK$.  This is a special type of  $\rm  FSK$  ("Frequency Shift Keying")  with  $\rm  CP-FSK$  ("Continuous Phase Matching"), where:
 +
*The modulation index has the smallest value that just satisfies the orthogonality condition:   $h = 0.5$   ⇒   "Minimum Shift Keying"  $\rm  (MSK)$,
 +
*A Gaussian low-pass with the impulse response  $h_{\rm G}(t)$  is inserted before the FSK modulator, with the aim of saving even more bandwidth.
  
Die Grafik verdeutlicht den Sachverhalt:
 
  
*Die digitale Nachricht wird durch die Amplitudenkoeffizienten  $a_{\mu}  ∈ \{±1\}$  repräsentiert, die einem Diracpuls beaufschlagt sind. Anzumerken ist, dass die eingezeichnete Folge für die Teilaufgabe '''(3)''' vorausgesetzt wird.
+
The graphic illustrates the situation:
  
*Der symmetrische Rechteckimpuls mit Dauer  $T = T_{\rm B}$  (GSM–Bitdauer) sei dimensionslos:
+
*The digital message is represented by the amplitude coefficients  $a_{\mu} ∈ \{±1\}$  which are applied to a "Dirac comb"  (Dirac delta train).  It should be noted that the sequence drawn in is assumed for the subtask  '''(3)'''.
 +
 
 +
*The symmetrical rectangular pulse with duration  $T = T_{\rm B}$  (GSM bit duration)  is dimensionless:
 
:$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
 
:$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
*Damit ergibt sich für das Rechtecksignal:
+
*This results for the rectangular signal
 
:$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
 
:$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
*Der Gaußtiefpass ist durch seinen Frequenzgang bzw. seine Impulsantwort gegeben:
+
*The Gaussian low-pass is given by its frequency response or impulse response:
:$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
+
:$$H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[{f}/ ({2 f_{\rm G})} ]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 \cdot f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\hspace{0.05cm}\cdot \hspace{0.05cm}t)^2}\hspace{0.05cm},$$
:wobei die systemtheoretische Grenzfrequenz&nbsp; $f_{\rm G}$&nbsp; verwendet wird. In der GSM–Spezifikation wird aber die 3dB–Grenzfrequenz mit&nbsp; $f_{\rm 3dB} = 0.3/T$&nbsp; angegeben. Daraus kann&nbsp; $f_{\rm G}$&nbsp; direkt berechnet werden – siehe Teilaufgabe '''(2)'''.
+
:where the system theoretical cut-off frequency&nbsp; $f_{\rm G}$&nbsp; is used.&nbsp; In the GSM specification, however, the 3dB cut-off frequency is specified with&nbsp; $f_{\rm 3dB} = 0.3/T$&nbsp;.&nbsp; From this,&nbsp; $f_{\rm G}$&nbsp; can be calculated directly - see subtask&nbsp; '''(2)'''.
  
*Das Signal nach dem Gaußtiefpass lautet somit:
+
*The signal after the Gaussian low-pass is thus
 
:$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
 
:$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
:Hierbei wird&nbsp; $g(t)$&nbsp; als ''Frequenzimpuls'' bezeichnet. Für diesen gilt:
+
*Here&nbsp; $g(t)$&nbsp; is referred to as "frequency pulse":
 
:$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
 
:$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
  
*Mit dem tiefpassgefilterten Signal&nbsp; $q_{\rm G}(t)$, der Trägerfrequenz&nbsp; $f_{\rm T}$&nbsp; und dem Frequenzhub&nbsp; $\Delta f_{\rm A}$&nbsp; kann somit für die Augenblicksfrequenz am Ausgang des FSK–Modulators geschrieben werden:
+
*With the low-pass filtered signal&nbsp; $q_{\rm G}(t)$, the carrier frequency&nbsp; $f_{\rm T}$&nbsp; and the frequency deviation&nbsp; $\Delta f_{\rm A}$&nbsp; for the instantaneous frequency at the output of the FSK modulator can thus be written:
 
:$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$
 
:$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$
  
  
  
 +
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|Some Gaussian integral values]]
  
 +
''Notes:''
  
 
+
*This exercise belongs to the chapter&nbsp;  [[Mobile_Communications/Characteristics_of_GSM|Characteristics of GSM]].  
 
+
*Reference is also made to the chapter&nbsp;  [[Examples_of_Communication_Systems/Radio_Interface|Radio Interface]]&nbsp; in the book "Examples of Communication Systems".   
''Hinweise:''
+
*For your calculations use the exemplary values&nbsp; $f_{\rm T} = 900 \ \ \rm MHz$&nbsp; and&nbsp; $\Delta f_{\rm A} = 68 \ \rm kHz$.
 
+
*Use the Gaussian integral to solve the task&nbsp; $($some numerical values are given in the table$)$.
*Die Aufgabe gehört zum Kapitel&nbsp;  [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].  
 
*Bezug genommen wird auch auf das Kapitel&nbsp;  [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]&nbsp; im Buch „Beispiele von Nachrichtensystemen”.  
 
   
 
*Verwenden Sie für Ihre Berechnungen die beispielhaften Werte&nbsp; $f_{\rm T} = 900 \ \rm MHz$&nbsp; und&nbsp; $\Delta f_{\rm A} = 68 \ \rm kHz$.
 
*Verwenden Sie zur Lösung der Aufgabe das Gaußintegral (einige Zahlenwerte sind in der Tabelle angegeben):
 
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|Tabelle der Gaußschen Fehlerfunktion]]
 
 
:$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$
 
:$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$
 
<br clear=all>
 
<br clear=all>
  
 
+
===Questionnaire===
 
 
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{In welchem Wertebereich kann die Augenblicksfrequenz&nbsp; $f_{\rm A}(t)$&nbsp; schwanken? Welche Voraussetzungen müssen dafür erfüllt sein?
+
{In what range of values the instantaneous frequency&nbsp; $f_{\rm A}(t)$&nbsp; can fluctuate?&nbsp; Which requirements must be met?
 
|type="{}"}
 
|type="{}"}
 
${\rm Max} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm} $ { 900.068 0.01% } $\ \rm MHz$
 
${\rm Max} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm} $ { 900.068 0.01% } $\ \rm MHz$
 
${\rm Min} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm} $ { 899.932 0.01% } $\ \rm MHz$
 
${\rm Min} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm} $ { 899.932 0.01% } $\ \rm MHz$
  
{Welche (normierte) systemtheoretische Grenzfrequenz des Gaußtiefpasses ergibt sich aus der Forderung&nbsp; $f_{\rm 3dB} \cdot T = 0.3$?
+
{Which (normalized) system-theoretical cut-off frequency of the Gaussian low-pass results from the requirement&nbsp; $f_{\rm 3dB} \cdot T = 0.3$?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }  
 
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }  
  
{Berechnen Sie den Frequenzimpuls&nbsp; $g(t)$&nbsp; unter Verwendung der Funktion&nbsp; $\phi (x)$. Wie groß ist der Impulswert&nbsp; $g(t = 0)$?
+
{Calculate the frequency pulse&nbsp; $g(t)$&nbsp; using the function&nbsp; $\phi (x)$.&nbsp; What is the result for&nbsp; $g(t = 0)$?
 
|type="{}"}
 
|type="{}"}
 
$g(t = 0) \ = \ $ { 0.737 3% }  
 
$g(t = 0) \ = \ $ { 0.737 3% }  
  
{Welcher Signalwert ergibt sich für&nbsp; $q_{\rm G}(t = 3T)$&nbsp; mit&nbsp; $a_{3} = –1$&nbsp; sowie&nbsp; $a_{\mu \ne 3} = +1$? Wie groß ist die Augenblicksfrequenz&nbsp; $f_{\rm A}(t = 3T)$?
+
{Which signal value results for&nbsp; $q_{\rm G}(t = 3T)$&nbsp; with&nbsp; $a_{3} = -1$&nbsp; and&nbsp; $a_{\mu \ne 3} = +1$?&nbsp; What is the instantaneous frequency&nbsp; $f_{\rm A}(t = 3T)$?
 
|type="{}"}
 
|type="{}"}
 
$q_{\rm G}(t = 3T) \ = \ $ { -0.51822--0.42978 }  
 
$q_{\rm G}(t = 3T) \ = \ $ { -0.51822--0.42978 }  
  
{Berechnen Sie die Impulswerte&nbsp; $g(t = ±T)$&nbsp; des Frequenzimpulses.
+
{Calculate the values&nbsp; $g(t = ±T)$&nbsp; of the frequency pulse.
 
|type="{}"}
 
|type="{}"}
 
$g(t = ±T) \ = \ $ { 0.131 3% }  
 
$g(t = ±T) \ = \ $ { 0.131 3% }  
  
{Die Amplitudenkoeffizienten seien alternierend. Welcher maximale Betrag von&nbsp; $q_{G}(t)$&nbsp; ergibt sich? Berücksichtigen Sie&nbsp; $g(t ≥ 2 T) \approx 0$.
+
{The amplitude coefficients are alternating.&nbsp; What is the maximum amount of&nbsp; $q_{\rm G}(t)$&nbsp;?&nbsp; Consider&nbsp; $g(t ≥ 2 T) \approx 0$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Max} \ |q_{\rm G}(t)| \ = \ $ { 0.475 3% }  
 
${\rm Max} \ |q_{\rm G}(t)| \ = \ $ { 0.475 3% }  
Line 81: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Sind alle Amplitudenkoeffizienten $a_{\mu}$ gleich $+1$, so ist $q_{\rm R}(t) = 1$ eine Konstante. Damit hat der Gaußtiefpass keinen Einfluss und es ergibt sich $q_{\rm G}(t) = 1$.  
+
'''(1)'''&nbsp; If all amplitude coefficients&nbsp; $a_{\mu}$&nbsp; are equal to&nbsp; $+1$, then&nbsp; $q_{\rm R}(t) = 1$&nbsp; is a constant.&nbsp; Thus, the Gaussian low-pass has no influence and&nbsp; $q_{\rm G}(t) = 1$&nbsp; results.  
*Die maximale Frequenz ist somit
+
*The maximum frequency is thus
 
:$${\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
 
:$${\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
*Das Minimum der Augenblicksfrequenz
+
*The minimum instantaneous frequency is
 
:$${\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
 
:$${\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
:ergibt sich, wenn alle Amplitudenkoeffizienten negativ sind. In diesem Fall ist $q_{\rm R}(t) = q_{\rm G}(t) = -1$.
+
:is obtained when all amplitude coefficients are negative.&nbsp; In this case $q_{\rm R}(t) = q_{\rm G}(t) = -1$.
 
 
  
  
'''(2)'''&nbsp; Diejenige Frequenz, bei der die logarithmierte Leistungsübertragungsfunktion gegenüber $f = 0$ um $3 \ \rm dB$ kleiner ist, bezeichnet man als die 3dB–Grenzfrequenz.  
+
'''(2)'''&nbsp; The frequency at which the logarithmic power transfer function is&nbsp; $3 \ \rm dB$&nbsp; less than for&nbsp; $f = 0$&nbsp; is called the "3dB cut-off frequency".  
*Dies lässt sich auch wie folgt ausdrücken:
+
*This can also be expressed as follows:
 
:$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
 
:$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
*Insbesondere gilt für den Gaußtiefpass wegen $H(f = 0) = 1$:
+
*In particular the Gauss low-pass because of&nbsp; $H(f = 0) = 1$:
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
*Die numerische Auswertung führt auf $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.  
+
*The numerical evaluation leads to&nbsp;  $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.  
*Aus $f_{\rm 3dB} \cdot T = 0.3$ folgt somit $f_{\rm G} \cdot T \underline{\approx 0.45}$.
+
*From&nbsp; $f_{\rm 3dB} \cdot T = 0.3$&nbsp; follows&nbsp; $f_{\rm G} \cdot T \underline{\approx 0.45}$.
  
  
  
'''(3)'''&nbsp; Der gesuchte Frequenzimpuls ${\rm g}(t)$ ergibt sich aus der Faltung von Rechteckfunktion $g_{\rm R}(t)$ mit der Impulsantwort $h_{\rm G}(t)$:
+
'''(3)'''&nbsp; The frequency pulse&nbsp; ${\rm g}(t)$&nbsp; results from the convolution of the rectangular function&nbsp; $g_{\rm R}(t)$&nbsp; with the impulse response&nbsp; $h_{\rm G}(t)$:
 
:$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$
 
:$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$
*Mit der Substitution $u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}$ und der Funktion $\phi (x)$ kann man hierfür auch schreiben:
+
*With the substitution&nbsp; $u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}$&nbsp; and the function&nbsp; $\phi (x)$&nbsp; you can also write for this:
 
:$$g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$
 
:$$g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$
*Für die Zeit $t = 0$ gilt unter Berücksichtigung von $\phi (-x) = 1 - \phi (x)$ und $f_{\rm G} \cdot T = 0.45$:
+
*Considering&nbsp; $\phi (-x) = 1 - \phi (x)$&nbsp; and&nbsp; $f_{\rm G} \cdot T = 0.45$,&nbsp; you get for the time&nbsp; $t = 0$:  
 
:$$g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$
 
:$$g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Mit $a_{3} = +1$ würde sich $q_{\rm G}(t = 3 T) = 1$ ergeben. Aufgrund der Linearität gilt somit:
+
'''(4)'''&nbsp; With&nbsp; $a_{3} = +1$&nbsp; the result would be&nbsp; $q_{\rm G}(t = 3 T) = 1$.&nbsp; Due to the linearity therefore applies:
 
:$$q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.$$
 
:$$q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.$$
  
  
  
'''(5)'''&nbsp; Mit dem Ergebnis aus (3) und $f_{\rm G} \cdot T = 0.45$ erhält man:
+
'''(5)'''&nbsp; With the result of&nbsp; '''(3)'''&nbsp; and&nbsp; $f_{\rm G} \cdot T = 0.45$&nbsp; you get
 
:$$g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx  \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.$$
 
:$$g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx  \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.$$
*Der Impulswert $g(t = -T)$ ist aufgrund der Symmetrie des Gaußtiefpasses genau so groß.
+
*The pulse value&nbsp; $g(t = -T)$&nbsp; is exactly the same due to the symmetry of the Gaussian low-pass.
  
  
  
'''(6)'''&nbsp; Bei alternierender Folge sind aus Symmetriegründen die Beträge $|q_{\rm G}(\mu \cdot T)|$ bei allen Vielfachen der Bitdauer $T$ alle gleich.  
+
'''(6)'''&nbsp; With alternating sequence, the absolute values&nbsp; $|q_{\rm G}(\mu \cdot T)|$&nbsp; are all the same for all multiples of the bit duration&nbsp; $T$&nbsp; for reasons of symmetry.  
*Alle Zwischenwerte bei $t \approx \mu \cdot T$ sind dagegen kleiner.  
+
*All intermediate values at&nbsp; $t \approx \mu \cdot T$&nbsp; are smaller.  
*Unter Berücksichtigung von $g(t ≥ 2T) \approx 0$ wird jeder einzelne Impulswert $g(0)$ durch den vorangegangenen Impuls mit $g(t = T)$ verkleinert, ebenso vom folgenden Impuls mit $g(t = -T)$.
+
* Taking&nbsp; $g(t ≥ 2T) \approx 0$&nbsp; into account, each individual pulse value&nbsp; $g(0)$&nbsp; is reduced by the preceding pulse with&nbsp; $g(t = T)$, and by the following pulse with&nbsp; $g(t = -T)$.
  
*Es ergeben sich also Impulsinterferenzen und man erhält:
+
*So there will be "intersymbol interference" and you get
 
:$${\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$
 
:$${\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$
  
Line 137: Line 131:
  
  
[[Category:Exercises for Mobile Communications|^3.3 Characteristics of GSM^]]
+
[[Category:Mobile Communications: Exercises|^3.3 Characteristics of GSM^]]

Revision as of 09:04, 26 May 2021

Different signals of GMSK-Modulation

The modulation method used for GSM is  "Gaussian Minimum Shift Keying",  short  $\rm GMSK$.  This is a special type of  $\rm FSK$  ("Frequency Shift Keying")  with  $\rm CP-FSK$  ("Continuous Phase Matching"), where:

  • The modulation index has the smallest value that just satisfies the orthogonality condition:   $h = 0.5$   ⇒   "Minimum Shift Keying"  $\rm (MSK)$,
  • A Gaussian low-pass with the impulse response  $h_{\rm G}(t)$  is inserted before the FSK modulator, with the aim of saving even more bandwidth.


The graphic illustrates the situation:

  • The digital message is represented by the amplitude coefficients  $a_{\mu} ∈ \{±1\}$  which are applied to a "Dirac comb"  (Dirac delta train).  It should be noted that the sequence drawn in is assumed for the subtask  (3).
  • The symmetrical rectangular pulse with duration  $T = T_{\rm B}$  (GSM bit duration)  is dimensionless:
$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
  • This results for the rectangular signal
$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
  • The Gaussian low-pass is given by its frequency response or impulse response:
$$H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[{f}/ ({2 f_{\rm G})} ]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 \cdot f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\hspace{0.05cm}\cdot \hspace{0.05cm}t)^2}\hspace{0.05cm},$$
where the system theoretical cut-off frequency  $f_{\rm G}$  is used.  In the GSM specification, however, the 3dB cut-off frequency is specified with  $f_{\rm 3dB} = 0.3/T$ .  From this,  $f_{\rm G}$  can be calculated directly - see subtask  (2).
  • The signal after the Gaussian low-pass is thus
$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
  • Here  $g(t)$  is referred to as "frequency pulse":
$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
  • With the low-pass filtered signal  $q_{\rm G}(t)$, the carrier frequency  $f_{\rm T}$  and the frequency deviation  $\Delta f_{\rm A}$  for the instantaneous frequency at the output of the FSK modulator can thus be written:
$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$


Some Gaussian integral values

Notes:

  • This exercise belongs to the chapter  Characteristics of GSM.
  • Reference is also made to the chapter  Radio Interface  in the book "Examples of Communication Systems".
  • For your calculations use the exemplary values  $f_{\rm T} = 900 \ \ \rm MHz$  and  $\Delta f_{\rm A} = 68 \ \rm kHz$.
  • Use the Gaussian integral to solve the task  $($some numerical values are given in the table$)$.
$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$


Questionnaire

1

In what range of values the instantaneous frequency  $f_{\rm A}(t)$  can fluctuate?  Which requirements must be met?

${\rm Max} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm} $

$\ \rm MHz$
${\rm Min} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm} $

$\ \rm MHz$

2

Which (normalized) system-theoretical cut-off frequency of the Gaussian low-pass results from the requirement  $f_{\rm 3dB} \cdot T = 0.3$?

$f_{\rm G} \cdot T \ = \ $

3

Calculate the frequency pulse  $g(t)$  using the function  $\phi (x)$.  What is the result for  $g(t = 0)$?

$g(t = 0) \ = \ $

4

Which signal value results for  $q_{\rm G}(t = 3T)$  with  $a_{3} = -1$  and  $a_{\mu \ne 3} = +1$?  What is the instantaneous frequency  $f_{\rm A}(t = 3T)$?

$q_{\rm G}(t = 3T) \ = \ $

5

Calculate the values  $g(t = ±T)$  of the frequency pulse.

$g(t = ±T) \ = \ $

6

The amplitude coefficients are alternating.  What is the maximum amount of  $q_{\rm G}(t)$ ?  Consider  $g(t ≥ 2 T) \approx 0$.

${\rm Max} \ |q_{\rm G}(t)| \ = \ $


Solution

(1)  If all amplitude coefficients  $a_{\mu}$  are equal to  $+1$, then  $q_{\rm R}(t) = 1$  is a constant.  Thus, the Gaussian low-pass has no influence and  $q_{\rm G}(t) = 1$  results.

  • The maximum frequency is thus
$${\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
  • The minimum instantaneous frequency is
$${\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
is obtained when all amplitude coefficients are negative.  In this case $q_{\rm R}(t) = q_{\rm G}(t) = -1$.


(2)  The frequency at which the logarithmic power transfer function is  $3 \ \rm dB$  less than for  $f = 0$  is called the "3dB cut-off frequency".

  • This can also be expressed as follows:
$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
  • In particular the Gauss low-pass because of  $H(f = 0) = 1$:
$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
  • The numerical evaluation leads to  $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.
  • From  $f_{\rm 3dB} \cdot T = 0.3$  follows  $f_{\rm G} \cdot T \underline{\approx 0.45}$.


(3)  The frequency pulse  ${\rm g}(t)$  results from the convolution of the rectangular function  $g_{\rm R}(t)$  with the impulse response  $h_{\rm G}(t)$:

$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$
  • With the substitution  $u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}$  and the function  $\phi (x)$  you can also write for this:
$$g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$
  • Considering  $\phi (-x) = 1 - \phi (x)$  and  $f_{\rm G} \cdot T = 0.45$,  you get for the time  $t = 0$:
$$g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$


(4)  With  $a_{3} = +1$  the result would be  $q_{\rm G}(t = 3 T) = 1$.  Due to the linearity therefore applies:

$$q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.$$


(5)  With the result of  (3)  and  $f_{\rm G} \cdot T = 0.45$  you get

$$g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.$$
  • The pulse value  $g(t = -T)$  is exactly the same due to the symmetry of the Gaussian low-pass.


(6)  With alternating sequence, the absolute values  $|q_{\rm G}(\mu \cdot T)|$  are all the same for all multiples of the bit duration  $T$  for reasons of symmetry.

  • All intermediate values at  $t \approx \mu \cdot T$  are smaller.
  • Taking  $g(t ≥ 2T) \approx 0$  into account, each individual pulse value  $g(0)$  is reduced by the preceding pulse with  $g(t = T)$, and by the following pulse with  $g(t = -T)$.
  • So there will be "intersymbol interference" and you get
$${\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$