Difference between revisions of "Aufgaben:Exercise 3.8: OVSF Codes"

From LNTwww
m (Text replacement - "===Sample solution===" to "===Solution===")
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_Mob_A_3_9.png|right|frame|Tree diagram to construct <br>a OVSF–Code]]
+
[[File:EN_Mob_A_3_9.png|right|frame|Tree diagram to construct <br>an OVSF–Code]]
 
The spreading codes for UMTS should
 
The spreading codes for UMTS should
 
*be orthogonal, in order to avoid mutual influence of the participants,
 
*be orthogonal, in order to avoid mutual influence of the participants,
Line 9: Line 9:
  
  
An example are the&nbsp;''orthogonal Variable Spreading Factor''&nbsp;(OVSF),which provide the spreading codes of lengths from&nbsp; $J = 4$&nbsp; to&nbsp; $J = 512$&nbsp;.
+
An example are the&nbsp; "Orthogonal Variable Spreading Factor Codes"&nbsp; $\rm (OVSF)$, which provide the spreading codes of lengths from&nbsp; $J = 4$&nbsp; to&nbsp; $J = 512$&nbsp;.
  
As shown in the graphic, these can be created with the help of a code tree. In doing so, each branching from a code &nbsp; $\mathcal{C}$&nbsp;results in two new codes &nbsp; $(+\mathcal{C}\  +\mathcal{C})$&nbsp; and&nbsp; $(+\mathcal{C} \ –\mathcal{C})$.
+
As shown in the graphic, these can be created with the help of a code tree.&nbsp; In doing so, each branching from a code &nbsp; $\mathcal{C}$&nbsp;results in two new codes &nbsp; $(+\mathcal{C}\  +\mathcal{C})$&nbsp; and&nbsp; $(+\mathcal{C} \ –\mathcal{C})$.
  
The diagram illustrates the principle given here using the following example&nbsp; $J = 4$. If you number the spreading sequences from&nbsp; $0$&nbsp; to&nbsp; $J –1$&nbsp; through, the spreading sequences result
+
The diagram illustrates the principle given here using the following example&nbsp; $J = 4$.&nbsp; If you number the spreading sequences from&nbsp; $0$&nbsp; to&nbsp; $J -1$, the spreading sequences result
 
:$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
 
:$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
 
:$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
 
:$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
Line 19: Line 19:
 
:$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
 
:$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
  
According to this nomenclature, for the spreading factor&nbsp; $J = 8$&nbsp; there are the spreading sequences&nbsp; $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle.$
+
According to this nomenclature, there are the spreading sequences&nbsp; $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle$&nbsp; for the spreading factor&nbsp; $J = 8$.&nbsp;
  
 
It should be noted that no predecessor or successor of a code may be used by other participants.  
 
It should be noted that no predecessor or successor of a code may be used by other participants.  
 
*In the example, four spreading codes with spreading factor&nbsp; $J = 4$&nbsp; could be used, or  
 
*In the example, four spreading codes with spreading factor&nbsp; $J = 4$&nbsp; could be used, or  
*the three codes highlighted in yellow - once with&nbsp; $J = 2$&nbsp; and twice with &nbsp; $J = 4$.
+
*the three codes highlighted in yellow &ndash; once with&nbsp; $J = 2$&nbsp; and twice with &nbsp; $J = 4$.
  
  

Revision as of 16:42, 25 January 2021

Tree diagram to construct
an OVSF–Code

The spreading codes for UMTS should

  • be orthogonal, in order to avoid mutual influence of the participants,
  • at the same time also allow a flexible realization of different spreading factors  $J$ .


An example are the  "Orthogonal Variable Spreading Factor Codes"  $\rm (OVSF)$, which provide the spreading codes of lengths from  $J = 4$  to  $J = 512$ .

As shown in the graphic, these can be created with the help of a code tree.  In doing so, each branching from a code   $\mathcal{C}$ results in two new codes   $(+\mathcal{C}\ +\mathcal{C})$  and  $(+\mathcal{C} \ –\mathcal{C})$.

The diagram illustrates the principle given here using the following example  $J = 4$.  If you number the spreading sequences from  $0$  to  $J -1$, the spreading sequences result

$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$

According to this nomenclature, there are the spreading sequences  $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle$  for the spreading factor  $J = 8$. 

It should be noted that no predecessor or successor of a code may be used by other participants.

  • In the example, four spreading codes with spreading factor  $J = 4$  could be used, or
  • the three codes highlighted in yellow – once with  $J = 2$  and twice with   $J = 4$.




Notes:


Questionnaire

1

Construct the tree diagram for  $J = 8$. What are the resulting OVSF codes?

$\langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$,
$\langle c_\nu^{(3)}\rangle = +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$,
$\langle c_\nu^{(5)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1$,
$\langle c_\nu^{(7)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$.

2

How many UMTS users can be served with  $J = 8$  at maximum?

$K_{\rm max} \ = \ $

3

How many users can be supplied with  $J = 8$  if three of them should use a spreading code with  $J = 4$ ?

$K \ = \ $

4

The tree structure applies to  $J = 32$.  Is the following assignment feasible:  
twice   $J = 4$, once  $J = 8$, once  $J = 164$  and eight times  $J = 32$?

Yes.
No.


Solution

OVSF tree structure for $J = 8$

(1)  The following graphic shows the OVSF tree structure for $J = $8 users.

  • From this it can be seen that the solutions 1, 3 and 4 apply, but not the second.


(2)  If each user is assigned a spreading code with the spreading degree $J = 8$, $K_{\rm max} \ \underline{= 8}$ users can be supplied.


(3)  If three users are supplied with $J = 4$, only two users can be served by a spreading sequence with $J = 8$ (see example yellow background in the graphic) $\ \Rightarrow \ \ \underline{K = 5}$.


(4)  We denote

  • $K_{4} = 2$ as the number of spreading sequences with $J = 4$,
  • $K_{8} = 1$ as the number of spreading sequences with $J = 8$,
  • $K_{16} = 2$ as the number of spreading sequences with $J = 16$,
  • $K_{32} = 8$ as the number of spreading sequences with $J = 32$,


Then the following condition must be fulfilled:

$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
  • Because $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ the desired assignment is just allowed   ⇒   The answer is YES.
  • For example, providing the $J = 4$ twice blocks the upper half of the tree, after providing a $J = 8$ spreading code, $3$ of the $8$ branches remain to be occupied at the $J = 8$ level, and so on and so forth.