Exercise 4.06Z: Signal Space Constellations

From LNTwww
Revision as of 15:39, 5 July 2022 by Hwang (talk | contribs)

Three signal space constellations

The (mean) error probability of an optimal binary system is:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$

It should be noted here:

  • ${\rm Q}(x)$  denotes the complementary Gaussian error function (definition and approximation):
$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$
  • $d$  specifies the distance between the two transmitted signal points  $s_0$  and  $s_1$  in vector space:
$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$
  • $\sigma_n^2$  is the variance of the AWGN noise after the detector, which, for example, can be implemented as a matched filter.
    It is assumed that  $\sigma_n^2 = N_0/2$.


The graphic shows three different signal space constellations, namely

  • Variant $\rm A$:   $s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1)$,
  • Variant $\rm B$:   $s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2)$,
  • Variant $\rm C$:   $s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0)$.


The mean energy per symbol  $(E_{\rm S})$  can be calculated as follows:

$$E_{\rm S} = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot || \boldsymbol{ s }_0||^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot || \boldsymbol{ s }_1||^2\hspace{0.05cm}.$$




Notes:

  • The chapter belongs to the chapter  "Approximation of the Error Probability".
  • For numeric calculations, the energy  $E = 1$  can be set for simplification.
  • Unless otherwise specified, equally probable symbols can be assumed:
$${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$$



Questions

1

Which prerequisites must absolutely (in any case) be fulfilled so that the given error probability equation is valid?

Additive white Gaussian noise with variance  $\sigma_n^2$.
Optimal binary receiver.
Decision boundary in the middle between the symbols.
Equally likely symbols  $s_0$  and  $s_1$.

2

Which statement applies to the error probability with  $\sigma_n^2 = E$?

Variant  $\rm A$  has the lowest error probability.
Variant  $\rm B$  has the lowest error probability.
Variant  $\rm C$  has the lowest error probability.
All variants show the same error behavior.

3

Give the error probability for variant  $\rm A$  with  $\sigma_n^2 = E$.  You can calculate  ${\rm Q}(x)$  according to the approximation.

$p_{\rm S} \ = \ $

$\ \%$

4

It is assumed that  $N_0 = 2 \cdot 10^{\rm –6} \ {\rm W/Hz}$,  $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$. What is the probability for variant $\rm C$  with equally probable symbols?

$p_{\rm S} \ = \ $

$\ \%$

5

What is the error probability for variant  $\rm B$ under the same conditions?

$p_{\rm S} \ = \ $

$\ \%$

6

How large should the average energy per symbol  $(E_{\rm S})$  be chosen for variant $\rm A$  in order to obtain the same error probability as for system  $\rm C$? 

$E_{\rm S} \ = \ $

$\ \cdot 10^{\rm –6} \ \rm Ws$


Solution

(1)  The first three prerequisites must be met in any case:

  • The equation then applies independently of the occurrence probabilities.
  • In the case of ${\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1)$, a lower error probability can be achieved by shifting the decision threshold.


(2)  The noise rms value $\sigma_n$ and thus also the signal energy $E = \sigma_n^2$ are the same for all three considered variants. The same applies to the distance of the signal space points. For variant  $\rm A$,  for example, the following applies:

$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.$$

Due to the shifting of the coordinate system, the distance between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ does not change (variant  $\rm B$), and the same distance results in variant  $\rm C$  (after rotation).

Solution 4 is correct:

  • Durch eine Drehung des Koordinatensystems kann man bei einem Binärsystem $(M = 2)$ stets mit einer Basisfunktion $(N = 1)$ auskommen.
  • Da das zweidimensionale Rauschen zirkulär symmetrisch ist   ⇒   gleiche Streuung $\sigma_n$ in alle Richtungen, kann auch der Rauschterm wie im Kapitel Fehlerwahrscheinlichkeit bei Basisbandübertragung eindimensional beschrieben werden.


(3)  Für alle hier betrachteten Varianten gilt, also auch für die Variante  $\rm A$:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) = {\rm Q}(2.5)\hspace{0.05cm}.$$

Mit der angegebenen Näherung erhält man

$$p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$


(4)  Bei der Variante  $\rm C$  ergibt sich für die mittlere Energie pro Symbol:

$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = \left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E$$
$$\Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} \hspace{0.05cm}.$$

Setzt man dieses Ergebnis in die unter (3) gefundene Gleichung ein, so erhält man mit $\sigma_n^2 = N_0/2$:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. $$


(5)  Durch Drehung des Koordinatensystems ändert sich nichts an den Energieverhältnissen. Deshalb erhält man wieder $p_{\rm S} \ \underline {\approx 0.7\%}$.


(6)  Bei der Variante  $\rm A$  ist die mittlere Energie pro Symbol

$$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E \hspace{0.05cm}. $$

Der Abstand von der Schwelle, die bei gleichwahrscheinlichen Symbolen in der Mitte zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ liegen sollte, ist wie bei den anderen Varianten $d/2 = 2.5 \cdot E^{\rm 1/2}$. Mit $\sigma_n^2 = N_0/2$ erhält man somit die Bestimmungsgleichung:

$$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{\frac {2E}{N_0}} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {E}{N_0} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5$$
$$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$

Das bedeutet: Bei der Variante  $\rm A$  ist gegenüber den beiden anderen Symbolen eine um den Faktor $3.44$ größere mittlere Symbolenergie $E_{\rm S}$ erforderlich, um die gleiche Fehlerwahrscheinlichkeit $p_{\rm S} = 0.7%$ zu erzielen.

  • Das heißt: Diese Signalraumkonstellation ist sehr ungünstig. Es ergibt sich ein sehr großes $E_{\rm S}$, ohne dass gleichzeitig der Abstand $d$ vergrößert wird.
  • Mit $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$ würde sich dagegen $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ ergeben.
  • Das heißt:   Die Fehlerwahrscheinlichkeit würde um mehr als eine Zehnerpotenz größer.