Exercise 4.2Z: Eight-level Phase Shift Keying

From LNTwww
Revision as of 09:34, 9 November 2017 by Guenter (talk | contribs)

Signalraumpunkte bei 8-PSK

Die $M = 8$ möglichen Sendesignale bei 8–PSK lauten mit $i = 0, \ \text{...} \ , 7$ im Bereich $0 ≤ t < T$:

$$s_i(t)= A \cdot \cos(2\pi f_{\rm T}t + i \cdot {\pi}/{4}) \hspace{0.05cm}.$$

Außerhalb der Symboldauer $T$ sind die Signale $s_i(t)$ alle gleich $0$.

In der Aufgabe 4.2 wurde gezeigt, dass diese Signalmenge durch die Basisfunktionen

$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},$$
$$\varphi_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}$$

wie folgt dargestellt werden kann ($i = 0, \ \text{...} \ , 7$):

$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}.$$

Die äquivalente Tiefpassdarstellung der Signale $s_i(t)$ lautet entsprechend dem Abschnitt Systembeschreibung durch das äquivalente Tiefpass–Signal des Buches „Modulationsverfahren”:

$$s_{{\rm TP}i}(t)= a_{i} \cdot g_s(t) \hspace{0.05cm}, \hspace{0.2cm}a_{i} = a_{{\rm I}i} + {\rm j} \cdot a_{{\rm Q}i} \hspace{0.05cm}, \hspace{0.2cm}i = 0,\text{...} \hspace{0.1cm} , 7 \hspace{0.05cm},$$

wobei $a_i$ komplexe dimensionslose Koeffizienten sind und die Energie des Sendegrundimpulses $g_s(t)$ im Tiefpassbereich $E_{\it gs}$ beträgt. Im hier dargestellten Fall beschreibt $g_s(t)$ einen Rechteckimpuls, doch kann für $g_s(t)$ auch ein jeder andere energiebegrenzte Impuls verwendet werden.

Die Grafik zeigt die Signalraumdarstellung der 8–PSK für das Bandpass–Signal (oben) sowie für das äquivalente Tiefpass–Signal (unten):

  • Man erkennt daraus, dass sich die beiden Darstellungen nur duch die verwendeten Basisfunktionen unterscheiden, wobei $\varphi_1(t)$ in der oberen und der unteren Grafik für unterschiedliche Funktionen steht.
  • In der Tiefpassdarstellung gilt $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Signale, Basisfunktionen und Vektorräume.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Verwenden Sie zur Abkürzung die Energie $E = 1/2 \cdot A^2 \cdot T$.
  • Im Gegensatz zum Theorieteil und zur Aufgabe 4.2 kann hier die Laufvariable $i$ die Werte $0, \ \text{...} \, ,M–1$ annehmen.


Fragebogen

1

Wie lauten die Koeffizienten des Signals $s_0(t)$?

$s_{\rm 01}$ =

$\ \cdot E^{\rm 0.5}$
$s_{\rm 02}$ =

$\ \cdot E^{\rm 0.5}$

2

Wie lauten die Koeffizienten des Signals $s_2(t)$?

$s_{\rm 21}$ =

$\ \cdot E^{\rm 0.5}$
$s_{\rm 22}$ =

$\ \cdot E^{\rm 0.5}$

3

Wie lauten die Koeffizienten des Signals $s_5(t)$?

$s_{\rm 51}$ =

$\ \cdot E^{\rm 0.5}$
$s_{\rm 52}$ =

$\ \cdot E^{\rm 0.5}$

4

Durch welche Basisfunktionen sind die TP–Signale $s_{\rm TP \it i}(t) darstellbar? Durch

eine komplexe Basisfunktion $\xi_1(t)$,
zwei komplexe Basisfunktionen $\xi_1(t)$ und $\xi_2(t)$,
zwei reelle Funktionen $\varphi_1(t)$ und $\psi_1(t)$.

5

Wie lauten im vorliegenden Fall die reellen Basisfunktionen?

$\varphi_1(t) = g_s(t)$,
$\varphi_1(t) = g_s(t)/E_{\rm gs}^{\rm 0.5}$,
$\psi_1(t) = \varphi_1(t)$,
$\psi_1(t) = j \cdot \varphi_1(t)$.

6

Es gelte $s_{\rm TP0}(t) = E^{\rm 0.5}$. Was trifft zu:

Die Energie $E$ bezieht sich auf das Tiefpass–Signal.
Die Energie $E$ bezieht sich auf das Bandpass–Signal.


Musterlösung

(1)  Es ist

$$s_0(t)= A \cdot \cos(2\pi f_{\rm T}t ) = s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm}.$$

Da dieses Signal keinen Sinusteil aufweist, ist $s_{\rm 02} = 0$. Weiter gilt mit der angegebenen Abkürzung:

$$A = s_{01} \cdot \sqrt{{2}/{T}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} s_{01}=\sqrt{1/2 \cdot A^2 \cdot T} = \sqrt{E}\hspace{0.05cm} \hspace{0.15cm}\underline { = 1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$


(2)  Das Signal $s_2(t)$ lautet mit $i = 2$ (beachten Sie, dass die zweite Basisfunktion minus–sinusförmig ist):

$$s_2(t)= A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{2})= - A \cdot \sin(2\pi f_{\rm T}t )$$
$$\Rightarrow \hspace{0.3cm} s_{21}\hspace{0.05cm} \underline{= 0}\hspace{0.05cm}, \hspace{0.2cm} s_{22}= \sqrt{E} \hspace{0.05cm} \hspace{0.15cm}\underline {=1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$


(3)  Entsprechend den Musterlösungen zu (1) und (2) gilt nun:

$$s_{51}= s_{52}= - \sqrt{E/2} \hspace{0.05cm} \hspace{0.15cm}\underline { = -0.707 \cdot E^{\hspace{0.05cm}0.5}}$$
$$\Rightarrow \hspace{0.3cm} s_{5}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - {A}/{ \sqrt{2}} \cdot \cos(2\pi f_{\rm T}t ) - {A}/{ \sqrt{2}} \cdot \sin(2\pi f_{\rm T}t )=$$
$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t + \phi_5)\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\phi_5 = -0.75 \cdot \pi \hspace{0.2cm}{\rm bzw.}\hspace{0.2cm}\phi_5 = 1.25 \cdot \pi \hspace{0.05cm}.$$


(4)  Richtig sind die Lösungsvorschläge 1 und 3. Dabei gilt folgender Zusammenhang:

$$\xi_1 (t) = \varphi_1 (t) + {\rm j} \cdot \psi_1 (t)\hspace{0.05cm}.$$


(5)  Richtig sind hier die Alternativen 2 und 3. Die Basisfunktion muss energienormiert sein und $\psi_1(t)$ ist wie $\varphi_1(t)$ eine reelle, nicht etwa eine imaginäre Funktion:

$$\varphi_1 (t) = \psi_1 (t) = \left\{ \begin{array}{c} 1/\sqrt{T} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$


(6)  Aus dem Tiefpass–Signal $s_{\rm TP0}(t)$ kann auch das Bandpass–Signal $s_0(t)$ berechnet werden. Im Bereich $0 ≤ t ≤ T$ gilt mit dem Ergebnis aus (5):

$$s_0(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}[s_{{\rm TP}0}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} ] = {\rm Re}[\sqrt{E} \cdot \frac{1}{\sqrt{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} ]= $$
$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm},$$

also das gleiche Ergebnis wie in der Teilaufgabe (1). Daraus folgt: Die Energie $E$ bezieht sich auch bei Betrachtung im äquivalenten Tiefpass–Bereich auf das Bandpass–Signal.

Entsprechend gilt für das mit blauem Punkt markierte Signal $s_2(t)$ im interessierenden Bereich:

$$s_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} ] = $$
$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t)- \sqrt{E/T} \cdot \sin(2\pi f_{\rm T}t) ] =$$
$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{E/T} \cdot \sin(2\pi f_{\rm T}t) \hspace{0.05cm}.$$

Schließlich kann für das (grüne) Signal $s_5(t)$ im Bereich $0 ≤ t < T$ geschrieben werden:

$$s_5(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}[\frac{-1 - {\rm j}}{\sqrt{2}} \cdot \sqrt{{E}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} ] = ... = $$
$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{\frac{E}{2T}} \cdot \cos(2\pi f_{\rm T}t)+ \sqrt{\frac{E}{2T}} \cdot \sin(2\pi f_{\rm T}t)=$$
$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t + 1.25 \cdot \pi) \hspace{0.05cm}.$$

Auch diese Ergebnisse stimmen mit denen der Teilaufgaben (2) bzw. (3) überein. Zutreffend ist also der Lösungsvorschlag 2.