Difference between revisions of "Aufgaben:Exercise 4.4: About the Quantization Noise"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1616__Mod_A_4_4.png|right|]]
+
[[File:P_ID1616__Mod_A_4_4.png|right|frame|Quantisierungsfehler bei sägezahnförmigem Eingang]]
Zur Berechnung der Quantisierungsrauschleistung $P_Q$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{max}$ und der Periodendauer $T_0$ aus.
+
Zur Berechnung der Quantisierungsrauschleistung $P_{\rm Q}$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{\rm max}$ und der Periodendauer $T_0$ aus.
 +
*Im mittleren Zeitbereich $-T_0/2 ≤ t ≤ T_0/2$ gilt:   $q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$
 +
*Die Leistung des Signals $q(t)$ bezeichnen wir hier als die Sendeleistung $P_{\rm S}$ .
  
Im mittleren Zeitbereich $–T_0/2 ≤ t ≤ T_0/2$ gilt:
 
$$q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$$
 
Dessen Leistung wird hier mit $P_S$ bezeichnet.
 
  
Dieses Signal wird entsprechend der Grafik mit $M = 6$ Stufen quantisiert. Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite $Δ = 2/M · Q_{max}$ aufweist. Die Grafik zeigt diesen Sachverhalt für $Q_{max} = q_{max} = 6 V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe e) ausgegangen werden.
+
$q(t)$ wird entsprechend der Grafik mit $M = 6$ Stufen quantisiert:
 +
*Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{\rm max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite ${\it Δ} = 2/M · Q_{\rm max}$ aufweist.  
 +
*Die Grafik zeigt diesen Sachverhalt für $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe (5) ausgegangen werden.
  
Die so genannte '''Quantisierungsrauschleistung''' ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_Q(t) – q(t)$ definiert. Es gilt
+
Die so genannte '''Quantisierungsrauschleistung''' ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_{\rm Q}(t) – q(t)$ definiert. Es gilt
$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$
+
:$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$
wobei die Zeit $T_0'$ geeignet zu wählen ist. Als Quantisierungs–SNR bezeichnet man das Verhältnis
+
wobei die Zeit $T_0'$ geeignet zu wählen ist.  
$$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}}\hspace{0.05cm},$$
+
 
das meist in dB angegeben wird.
+
Als Quantisierungs–SNR bezeichnet man das Verhältnis   $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm},$ das meist logarithmisch (in dB) angegeben wird.
  
  
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Pulscodemodulation#Nat.C3.BCrliche_und_diskrete_Abtastung|Natürliche und diskrete Abtastung]].
+
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Pulscodemodulation#Quantisierung_und_Quantisierungsrauschen|Quantisierung und Quantisierungsrauschen]].
*Das abgetastete Quellensignal wird mit $q_{\rm A}(t)$ bezeichnet und dessen Spektralfunktion mit $Q_{\rm A}(f)$. Die Abtastung erfolgt stets bei $ν · T_{\rm A}$.
 
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
 
'''Hinweis:''' Die Aufgabe bezieht sich auf das [http://en.lntwww.de/Modulationsverfahren/Pulscodemodulation Kapitel 4.1].
 
  
  
Line 33: Line 30:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Signalleistung $P_S$ (auf 1 Ω bezogen):
+
{Berechnen Sie die Signalleistung $P_{\rm S}$ (auf den Widerstand $1 \ \rm Ω$ bezogen).
 
|type="{}"}
 
|type="{}"}
$P_S$ = { 12 3% } $V^2$  
+
$P_{\rm S} \ = \ $ { 12 3% } $\ \rm V^2$  
  
 
{Welche Aussagen treffen für das Fehlersignal $ε(t)$ zu?
 
{Welche Aussagen treffen für das Fehlersignal $ε(t)$ zu?
Line 41: Line 38:
 
+ $ε(t)$ hat einen sägezahnförmigen Verlauf.
 
+ $ε(t)$ hat einen sägezahnförmigen Verlauf.
 
- $ε(t)$ hat einen stufenförmigen Verlauf.
 
- $ε(t)$ hat einen stufenförmigen Verlauf.
+ $ε(t)$ ist auf den Bereich $±Δ/2 = ±1V$ beschränkt.
+
+ $ε(t)$ ist auf den Bereich $±{\it Δ}/2 = ±1 \ \rm V$ beschränkt.
 
+ $ε(t)$ besitzt die Periodendauer $T_0' = T_0/M$.
 
+ $ε(t)$ besitzt die Periodendauer $T_0' = T_0/M$.
  
  
{Wie groß ist die Quantisierungsrauschleistung?
+
{Wie groß ist die Quantisierungsrauschleistung $P_{\rm Q}$ für $M=6$?
 
|type="{}"}
 
|type="{}"}
$M=6  P_Q$ = { 0.333 3%  } $V^2$
+
$P_{\rm Q} \ = \ $ { 0.333 3%  } $\ \rm V^2$  
  
 
{Berechnen Sie den Quantisierungsrauschabstand für $M = 6$.
 
{Berechnen Sie den Quantisierungsrauschabstand für $M = 6$.
 
|type="{}"}
 
|type="{}"}
$M = 6:  10 · lg ρ_Q$ = { 15.56 3% } $dB$  
+
$10 · \lg \ ρ_{\rm Q} \ = \ $ { 15.56 3% } $\ \rm dB$  
  
{Welche Werte ergeben sich bei Quantisierung mit $N = 8$ bzw. $N = 16 Bit$?   
+
{Welche Werte ergeben sich bei Quantisierung mit $N = 8$ bzw. $N = 16$ Bit?   
 
|type="{}"}
 
|type="{}"}
$ N = 8:   10 · lg ρ_Q$ = { 48.16 3% } $dB$
+
$N = 8\text{:}\hspace{0.35cm}10 · \lg \ ρ_{\rm Q} \ = \ $ { 48.16 3% } $\ \rm dB$
$ N = 16:   10 · lg ρ_Q$ = { 96.32 3% } $dB$
+
$N = 16\text{:}\hspace{0.2cm}10 · \lg \ ρ_{\rm Q} \ = \ ${ 96.32 3% } $\ \rm dB$
  
{Welche Voraussetzungen müssen erfüllt sein, damit die abgeleitete Gleichung für $ρ_Q$ angewandt werden kann?
+
{Welche Voraussetzungen müssen erfüllt sein, damit die abgeleitete Gleichung für $ρ_{\rm Q}$ angewandt werden kann?
 
|type="[]"}
 
|type="[]"}
 
+ Alle Amplitudenwerte sind gleichwahrscheinlich.
 
+ Alle Amplitudenwerte sind gleichwahrscheinlich.
 
+ Es liegt ein linearer Quantisierer vor.
 
+ Es liegt ein linearer Quantisierer vor.
+ Der Quantisierer ist genau an das Signal angepasst ($Q_{max} = q_{max}$).
+
+ Der Quantisierer ist genau an das Signal angepasst ($Q_{\rm max} = q_{\rm max}$).
  
  

Revision as of 12:14, 20 July 2017

Quantisierungsfehler bei sägezahnförmigem Eingang

Zur Berechnung der Quantisierungsrauschleistung $P_{\rm Q}$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{\rm max}$ und der Periodendauer $T_0$ aus.

  • Im mittleren Zeitbereich $-T_0/2 ≤ t ≤ T_0/2$ gilt:   $q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$
  • Die Leistung des Signals $q(t)$ bezeichnen wir hier als die Sendeleistung $P_{\rm S}$ .


$q(t)$ wird entsprechend der Grafik mit $M = 6$ Stufen quantisiert:

  • Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{\rm max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite ${\it Δ} = 2/M · Q_{\rm max}$ aufweist.
  • Die Grafik zeigt diesen Sachverhalt für $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe (5) ausgegangen werden.

Die so genannte Quantisierungsrauschleistung ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_{\rm Q}(t) – q(t)$ definiert. Es gilt

$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$

wobei die Zeit $T_0'$ geeignet zu wählen ist.

Als Quantisierungs–SNR bezeichnet man das Verhältnis   $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm},$ das meist logarithmisch (in dB) angegeben wird.


Hinweise:


Fragebogen

1

Berechnen Sie die Signalleistung $P_{\rm S}$ (auf den Widerstand $1 \ \rm Ω$ bezogen).

$P_{\rm S} \ = \ $

$\ \rm V^2$

2

Welche Aussagen treffen für das Fehlersignal $ε(t)$ zu?

+ $ε(t)$ hat einen sägezahnförmigen Verlauf.
- $ε(t)$ hat einen stufenförmigen Verlauf.
+ $ε(t)$ ist auf den Bereich $±{\it Δ}/2 = ±1 \ \rm V$ beschränkt.
+ $ε(t)$ besitzt die Periodendauer $T_0' = T_0/M$.

3

Wie groß ist die Quantisierungsrauschleistung $P_{\rm Q}$ für $M=6$?

$P_{\rm Q} \ = \ $

$\ \rm V^2$

4

Berechnen Sie den Quantisierungsrauschabstand für $M = 6$.

$10 · \lg \ ρ_{\rm Q} \ = \ $

$\ \rm dB$

5

Welche Werte ergeben sich bei Quantisierung mit $N = 8$ bzw. $N = 16$ Bit?

$N = 8\text{:}\hspace{0.35cm}10 · \lg \ ρ_{\rm Q} \ = \ $

$\ \rm dB$
$N = 16\text{:}\hspace{0.2cm}10 · \lg \ ρ_{\rm Q} \ = \ $

$\ \rm dB$

6

Welche Voraussetzungen müssen erfüllt sein, damit die abgeleitete Gleichung für $ρ_{\rm Q}$ angewandt werden kann?

Alle Amplitudenwerte sind gleichwahrscheinlich.
Es liegt ein linearer Quantisierer vor.
Der Quantisierer ist genau an das Signal angepasst ($Q_{\rm max} = q_{\rm max}$).


Musterlösung

1. Die Signalleistung $P_S$ ist gleich dem quadratischen Mittelwert von $q(t)$, wenn der Bezugswiderstand 1Ω verwendet und dementsprechend für die Leistung die Einheit „$V^2$” in Kauf genommen wird. Aufgrund der Periodizität und der Symmetrie genügt die Mittelung über $T_0/2$: $$P_{\rm S} = \frac{1}{T_0/2} \cdot \int\limits_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int\limits_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t=$$ $$ = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int\limits_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.$$ Hierbei wurde die Substitution $x = 2 · t/T_0$ verwendet. Mit $q_{max} = 6 V$ erhält man $P_S = 12 V^2$.

2. Wir gehen hier von $Q_{max} = q_{max} = 6 V$ aus. Damit ergibt sich das sägezahnförmige Fehlersignal $ε(t)$ zwischen $±1V$ und der Periodendauer $T0' = T_0/6$. P ID1616 Mod A 4 4.png

Richtig sind also die Lösungsvorschläge 1, 3 und.4.


3. Das Fehlersignal $ε(t)$ verläuft ebenso wie $q(t)$ sägezahnförmig. Somit eignet sich zur Berechnung des quadratischen Mittelwertes dieselbe Gleichung wie in Teilaufgabe a). Zu beachten ist die um den Faktor M kleinere Amplitude, während die unterschiedliche Periodendauer für die Mittelung keine Rolle spielt: $$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$

4. Die Ergebnisse der Teilaufgaben a) und c) führen zum Quantisierungs–SNR: $$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.$$

5. Mit $M = 2^N$ erhält man allgemein: $$ \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} =20 \cdot {\rm lg}\hspace{0.1cm}(2)\cdot N \hspace{0.15cm}\underline {\approx 6.02\,{\rm dB}} \cdot N .$$ Daraus ergeben sich die gesuchten Sonderfälle: $$N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},$$ $$N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.$$

6. Alle diese Voraussetzungen müssen erfüllt sein. Bei nichtlinearer Quantisierung gilt $ρ_Q = M^2$ nicht. Bei einer anderen Amplitudenverteilung als der Gleichverteilung ist $ρ_Q = M^2$ ebenfalls nur eine Näherung, die jedoch meist in Kauf genommen wird. Ist $Q_{max} < q_{max}$, so kommt es zu einem unzulässigen Abschneiden der Spitzen, während mit $Q_{max} > q_{max}$ die Quantisierungsintervalle größer sind als erforderlich. P ID1618 Mod A 4 4f.png

Die Grafik zeigt die Fehlersignale $ε(t)$ für $Q_{max} > q_{max}$ (links) und $Q_{max} < q_{max}$ (rechts). In beiden Fällen ergibt sich eine deutlich größere Quantisierungsrauschleistung als unter Punkt c) berechnet.