Difference between revisions of "Aufgaben:Exercise 4.8Z: BPSK Error Probability"

From LNTwww
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Lineare digitale Modulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Linear_Digital_Modulation
 
}}
 
}}
  
[[File:P_ID1681__Dig_Z_4_1.png|right|frame|Tabelle der Komplementären Gaußschen Fehlerfunktion Q(<i>x</i>)]]
+
[[File:P_ID1681__Dig_Z_4_1.png|right|frame|Table of the Complementary Gaussian Error Function &nbsp;${\rm Q}(x)$]]
Wir gehen von dem optimalen Basisbandübertragungssystem für Binärsignale aus mit
+
We assume the optimal baseband transmission system for binary signals with
* bipolaren Amplitudenkoeffizienten $a_ν ∈ \{-1, +1\}$,
+
* bipolar amplitude coefficients &nbsp;$a_ν ∈ \{-1, +1\}$,
* rechteckförmigem Sendesignal mit den Signalwerten $±s_0$ und der Bitdauer $T_{\rm B}$,
+
* rectangular transmitted signal&nbsp; $s(t)$&nbsp; with signal values &nbsp;$±s_0$&nbsp; and bit duration &nbsp;$T_{\rm B}$,
* AWGN–Rauschen mit der Rauschleistungsdichte $N_0$,
+
* AWGN noise with the (one-sided) noise power density &nbsp;$N_0$,
* Empfangsfilter gemäß dem Matched–Filter–Prinzip,
+
* receiver filter according to the matched filter principle,
* Entscheider mit optimalem Schwellenwert $E = 0$.
+
* decision with optimal threshold value &nbsp;$E = 0$.
  
  
Wenn nichts anderes angegeben ist, so sollten Sie von den folgenden Zahlenwerten ausgehen:
+
If nothing else is specified,&nbsp; you should assume the following numerical values:
 
:$$s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$
 
:$$s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$
Die Bitfehlerwahrscheinlichkeit dieses Basisbandsystems lautet mit dem Rauscheffektivwert $σ_d$ am Entscheider und der komplementären Gaußschen Fehlerfunktion ${\rm Q}(x)$ &nbsp; &rArr; &nbsp; siehe Tabelle:
+
Using the noise rms value &nbsp;$σ_d$&nbsp; at the decision and the complementary Gaussian error function &nbsp;${\rm Q}(x)$,&nbsp; the bit error probability of this baseband&nbsp; $\rm (BB)$&nbsp; system is &nbsp; &rArr; &nbsp; see table:
:$$ p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$
+
:$$ p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/(2 \cdot T_{\rm B}}).$$
Diese Bitfehlerwahrscheinlichkeit kann auch in der Form
+
This bit error probability can also be expressed in the form
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )$$
+
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
geschrieben werden, wobei $E_{\rm B}$ die „Signalenergie pro Bit” angibt.  
+
where &nbsp;$E_{\rm B}$&nbsp; indicates the&nbsp; "signal energy per bit".
  
Die Bitfehlerwahrscheinlichkeit eines vergleichbaren Übertragungssystems mit ''Binary Phase Shift Keying (BPSK)'' lautet:
+
The bit error probability of a comparable transmission system with &nbsp;"Binary Phase Shift Keying"&nbsp; $\rm (BPSK)$&nbsp; is:
:$$ p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$
+
:$$ p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Lineare_digitale_Modulation|Lineare digitale Modulation]].
 
*Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Lineare_digitale_Modulation#Fehlerwahrscheinlichkeiten_-_ein_kurzer_.C3.9Cberblick|Fehlerwahrscheinlichkeiten - ein kurzer Überblick]].
 
*Die Herleitungen finden Sie im Kapitel [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]] des Buches „Digitalsignalübertragung”.
 
*Die Angabe einer Leistung in $\rm V^2$ bzw. einer Energie in $\rm V^2 s$ bedeutet eine Umrechnung auf den Bezugswiderstand $1 \ \rm \Omega$.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
  
===Fragebogen===
+
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Linear_Digital_Modulation|"Linear Digital Modulation"]].
 +
*Reference is made in particular to the section&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#Error_probabilities_-_a_brief_overview|"Error probabilities - a brief overview"]].
 +
*The derivations can be found in the chapter&nbsp; [[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]]&nbsp; of the book "Digital Signal Transmission".
 +
*The specification of a power in &nbsp;$\rm V^2$&nbsp; or an energy in &nbsp;$\rm V^2 s$&nbsp; means a conversion to the reference resistance &nbsp;$1 \ \rm \Omega$.
 +
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{$s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$ Wie groß ist die Fehlerwahrscheinlichkeit $p_{\rm BB}$ des Basisbandsystems?
+
{Let &nbsp;$s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$&nbsp; What is the error probability &nbsp;$p_{\rm BB}$&nbsp; of the baseband system?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm BB} \ = \ $ { 0.317 3% } $\ \cdot 10^{-4}$
 
$p_{\rm BB} \ = \ $ { 0.317 3% } $\ \cdot 10^{-4}$
  
  
{Wie groß ist für diesen Parametersatz die Energie pro Bit &nbsp; &rArr; &nbsp; $E_{\rm B}$ beim Basisbandsystem?
+
{For this parameter set,&nbsp; what is the energy per bit &nbsp; &rArr; &nbsp; &nbsp;$E_{\rm B}$&nbsp; for the baseband system?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm B}  \ = \ $ { 1.6 3% } $\ \cdot 10^{-8} \ \rm V^2 s$
 
$E_{\rm B}  \ = \ $ { 1.6 3% } $\ \cdot 10^{-8} \ \rm V^2 s$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich bei halber Sendeamplitude &nbsp; &rArr; &nbsp; $s_0 = 2\,{\rm V}$?
+
{What is the error probability at half the transmitted amplitude &nbsp; &rArr; &nbsp; &nbsp;$s_0 = 2\,{\rm V}$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm BB} \ = \ $ { 227 3% } $\ \cdot 10^{-4}$
 
$p_{\rm BB} \ = \ $ { 227 3% } $\ \cdot 10^{-4}$
 
   
 
   
{Geben Sie die Fehlerwahrscheinlichkeit der BPSK abhängig vom Quotienten $E_{\rm B}/N_0$ an. Welches Ergebnis stimmt?
+
{Give the error probability of the BPSK depending on the quotient &nbsp;$E_{\rm B}/N_0$.&nbsp; Which result is correct?
|type="[]"}  
+
|type="()"}  
- $p_{\rm BPSK} = {\rm Q}[(E_{\rm B}/N_0)^{1/2}],$
+
- $p_{\rm BPSK} = {\rm Q}\big[(E_{\rm B}/N_0)^{1/2}\big],$
+ $p_{\rm BPSK} = {\rm Q}[(2E_{\rm B}/N_0)^{1/2}],$
+
+ $p_{\rm BPSK} = {\rm Q}\big[(2E_{\rm B}/N_0)^{1/2}\big],$
-  $p_{\rm BPSK} = {\rm Q}[(4E_{\rm B}/N_0)^{1/2}].$
+
-  $p_{\rm BPSK} = {\rm Q}\big[(4E_{\rm B}/N_0)^{1/2}\big].$
  
{Welche Fehlerwahrscheinlichkeiten ergeben sich bei der BPSK für $E_{\rm B}/N_0 = 8$ und $E_{\rm B}/N_0 = 2$?
+
{What are the error probabilities for BPSK with &nbsp;$E_{\rm B}/N_0 = 8$&nbsp; and &nbsp;$E_{\rm B}/N_0 = 2$?
 
|type="{}"}
 
|type="{}"}
$E_{\rm B}/N_0 = 8\text{:} \ \   p_{\rm BPSK} \ = \ $ { 0.317 3% } $\ \cdot 10^{-4}$
+
$E_{\rm B}/N_0 = 8\text{:} \ \ \ \  p_{\rm BPSK} \ = \ $ { 0.317 3% } $\ \cdot 10^{-4}$
$E_{\rm B}/N_0 = 2\text{:} \ \   p_{\rm BPSK} \ = \ $ { 0.227 3% } $\ \cdot 10^{-4}$
+
$E_{\rm B}/N_0 = 2\text{:} \ \ \ \  p_{\rm BPSK} \ = \ $ { 227 3% } $\ \cdot 10^{-4}$
  
  
Line 65: Line 69:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Der Rauscheffektivwert ergibt sich hier zu
+
'''(1)'''&nbsp;  The noise rms value here is given by
$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}$$
+
:$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}
$$: \Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}}.$$
+
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp;  For the baseband system:
 +
:$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.15cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
 +
*Of course,&nbsp; the second equation gives the exact same error probability
 +
:$$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp;  When the transmitted amplitude is half &nbsp; &rArr; &nbsp; $s_0 = 2\,{\rm V}$,&nbsp; the energy per bit decreases to one-fourth and the following equations apply:
 +
:$$ p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )= {\rm Q}(2)= 227 \cdot 10^{-4},$$
 +
:$$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.$$
  
'''2.''' Beim Basisbandsystem gilt:
 
$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.15cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
 
Natürlich ergibt sich mit der zweiten angegebenen Gleichung die genau gleiche Fehlerwahrscheinlichkeit
 
$$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
 
  
'''3.''' Bei halber Sendeamplitude $s_0 = 2 V$ sinkt die Energie pro Bit auf ein Viertel und es gelten folgende Gleichungen:
+
'''(4)'''&nbsp;  <u>Answer 2</u>&nbsp; is correct:
$$ p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )= {\rm Q}(2)= 0.227 \cdot 10^{-1},$$
+
*Considering the energy&nbsp; $E_{\rm B} = s_0^2 · T_{\rm B}/2$&nbsp; we obtain
$$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)\hspace{0.15cm}\underline {= 0.227 \cdot 10^{-1}}.$$
+
:$$ p_{\rm BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }}\hspace{0.1cm}\right ).$$
 +
*Thus,&nbsp; the same result is obtained as for the optimal baseband transmission system.
  
'''4.''' Unter Berücksichtigung der Energie $E_B = s_0^2 · T_B/2$ erhält man mit
 
$$ p_{\rm BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }}\hspace{0.1cm}\right )$$
 
das gleiche Ergebnis wie beim optimalen Basisbandübertragungssystem. Richtig ist somit Antwort 2.
 
  
  
'''5.''' Es ergeben sich die genau gleichen Ergebnisse wie bei der Basisbandübertragung:
+
'''(5)'''&nbsp;  Exactly the same results are obtained as for the baseband transmission in questions&nbsp; '''(1)'''&nbsp; and&nbsp; '''(3)''':
$$\frac{ E_{\rm B}}{N_0 }= 8: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}},$$
+
:$${ E_{\rm B}}/{N_0 }= 8: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}},$$
$$ \frac{ E_{\rm B}}{N_0 }= 2: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2)\hspace{0.15cm}\underline {= 0.227 \cdot 10^{-1}}.$$
+
:$$ { E_{\rm B}}/{N_0 }= 2: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 93: Line 102:
  
  
[[Category:Aufgaben zu  Modulationsverfahren|^4.2 Lineare digitale Modulation^]]
+
[[Category:Modulation Methods: Exercises|^4.2 Linear Digital Modulation^]]

Latest revision as of 18:26, 15 April 2022

Table of the Complementary Gaussian Error Function  ${\rm Q}(x)$

We assume the optimal baseband transmission system for binary signals with

  • bipolar amplitude coefficients  $a_ν ∈ \{-1, +1\}$,
  • rectangular transmitted signal  $s(t)$  with signal values  $±s_0$  and bit duration  $T_{\rm B}$,
  • AWGN noise with the (one-sided) noise power density  $N_0$,
  • receiver filter according to the matched filter principle,
  • decision with optimal threshold value  $E = 0$.


If nothing else is specified,  you should assume the following numerical values:

$$s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$

Using the noise rms value  $σ_d$  at the decision and the complementary Gaussian error function  ${\rm Q}(x)$,  the bit error probability of this baseband  $\rm (BB)$  system is   ⇒   see table:

$$ p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/(2 \cdot T_{\rm B}}).$$

This bit error probability can also be expressed in the form

$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$

where  $E_{\rm B}$  indicates the  "signal energy per bit".

The bit error probability of a comparable transmission system with  "Binary Phase Shift Keying"  $\rm (BPSK)$  is:

$$ p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$




Notes:



Questions

1

Let  $s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$  What is the error probability  $p_{\rm BB}$  of the baseband system?

$p_{\rm BB} \ = \ $

$\ \cdot 10^{-4}$

2

For this parameter set,  what is the energy per bit   ⇒    $E_{\rm B}$  for the baseband system?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-8} \ \rm V^2 s$

3

What is the error probability at half the transmitted amplitude   ⇒    $s_0 = 2\,{\rm V}$?

$p_{\rm BB} \ = \ $

$\ \cdot 10^{-4}$

4

Give the error probability of the BPSK depending on the quotient  $E_{\rm B}/N_0$.  Which result is correct?

$p_{\rm BPSK} = {\rm Q}\big[(E_{\rm B}/N_0)^{1/2}\big],$
$p_{\rm BPSK} = {\rm Q}\big[(2E_{\rm B}/N_0)^{1/2}\big],$
$p_{\rm BPSK} = {\rm Q}\big[(4E_{\rm B}/N_0)^{1/2}\big].$

5

What are the error probabilities for BPSK with  $E_{\rm B}/N_0 = 8$  and  $E_{\rm B}/N_0 = 2$?

$E_{\rm B}/N_0 = 8\text{:} \ \ \ \ p_{\rm BPSK} \ = \ $

$\ \cdot 10^{-4}$
$E_{\rm B}/N_0 = 2\text{:} \ \ \ \ p_{\rm BPSK} \ = \ $

$\ \cdot 10^{-4}$


Solution

(1)  The noise rms value here is given by

$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}}.$$


(2)  For the baseband system:

$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.15cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
  • Of course,  the second equation gives the exact same error probability
$$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$


(3)  When the transmitted amplitude is half   ⇒   $s_0 = 2\,{\rm V}$,  the energy per bit decreases to one-fourth and the following equations apply:

$$ p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )= {\rm Q}(2)= 227 \cdot 10^{-4},$$
$$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.$$


(4)  Answer 2  is correct:

  • Considering the energy  $E_{\rm B} = s_0^2 · T_{\rm B}/2$  we obtain
$$ p_{\rm BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }}\hspace{0.1cm}\right ).$$
  • Thus,  the same result is obtained as for the optimal baseband transmission system.


(5)  Exactly the same results are obtained as for the baseband transmission in questions  (1)  and  (3):

$${ E_{\rm B}}/{N_0 }= 8: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}},$$
$$ { E_{\rm B}}/{N_0 }= 2: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.$$