Difference between revisions of "Aufgaben:Exercise 5.4: Comparison of Rectangular and Hanning Window"

From LNTwww
m (Text replacement - "analyse" to "analyze")
(4 intermediate revisions by 2 users not shown)
Line 11: Line 11:
 
Unknown and thus to be estimated are its parameters  $A_1$,  $f_1$,  $A_2$  and  $f_2$.
 
Unknown and thus to be estimated are its parameters  $A_1$,  $f_1$,  $A_2$  and  $f_2$.
  
After weighting the signal with the window function  $w(t)$ , the product  $y(t) = x(t) \cdot w(t)$  is subjected to a  [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transform]]  (DFT) with the parameters  $N = 512$  and  $T_{\rm P}$ . The time period  $T_{\rm P}$  of the signal section to be analysed can be set by the user as desired.
+
After weighting the signal with the window function  $w(t)$ , the product  $y(t) = x(t) \cdot w(t)$  is subjected to a  [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transform]]  (DFT) with the parameters  $N = 512$  and  $T_{\rm P}$.  The time  $T_{\rm P}$  of the signal section to be analyzed can be set by the user as desired.
  
Two functions are available for windowing, each of which is zero for  $|t| > T_{\rm P}/2$ :
+
Two functions are available for windowing, each of which is zero for  $|t| > T_{\rm P}/2$:
 
*The  '''rectangular window''':
 
*The  '''rectangular window''':
 
   
 
   
 
:$${w} (\nu)  = \left\{ \begin{array}{c} 1 \\
 
:$${w} (\nu)  = \left\{ \begin{array}{c} 1 \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
\begin{array}{*{10}c}    {\rm{f\ddot{u}r}}
+
\begin{array}{*{10}c}    {\rm{for}}
 
\\    \\ \end{array}\begin{array}{*{20}c}
 
\\    \\ \end{array}\begin{array}{*{20}c}
 
-N/2 \le \nu < N/2 \hspace{0.05cm}, \\
 
-N/2 \le \nu < N/2 \hspace{0.05cm}, \\
{\rm sonst} \hspace{0.05cm}, \\
+
{\rm else} \hspace{0.05cm}, \\
 
\end{array}$$
 
\end{array}$$
 
   
 
   
Line 31: Line 31:
 
:$${w} (\nu)  = \left\{ \begin{array}{c} 0.5 + 0.5 \cdot \cos (2 \pi \cdot {\nu}/{N}) \\
 
:$${w} (\nu)  = \left\{ \begin{array}{c} 0.5 + 0.5 \cdot \cos (2 \pi \cdot {\nu}/{N}) \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
\begin{array}{*{10}c}    {\rm{f\ddot{u}r}}
+
\begin{array}{*{10}c}    {\rm{for}}
 
\\    \\ \end{array}\begin{array}{*{20}c}
 
\\    \\ \end{array}\begin{array}{*{20}c}
 
-N/2 \le \nu < N/2 \hspace{0.05cm}, \\
 
-N/2 \le \nu < N/2 \hspace{0.05cm}, \\
{\rm sonst} \hspace{0.05cm}, \\
+
{\rm else} \hspace{0.05cm}, \\
 
\end{array}$$  
 
\end{array}$$  
  
Line 50: Line 50:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In the graph above, two further spectral functions&nbsp; $Y_{\rm B}(f)$&nbsp; and&nbsp; $Y_{\rm C}(f)$&nbsp; are shown, which result when a&nbsp; $1 \ \text{kHz}$–Signal&nbsp; signal is analysed by DFT and the DFT parameter&nbsp; $T_{\rm P} = 8.5 \ \text{ms}$&nbsp; is chosen unfavourably.
+
In the graph, two further spectral functions&nbsp; $Y_{\rm B}(f)$&nbsp; and&nbsp; $Y_{\rm C}(f)$&nbsp; are shown, which result when a&nbsp; $1 \ \text{kHz}$&nbsp; signal is analyzed by DFT and the DFT parameter&nbsp; $T_{\rm P} = 8.5 \ \text{ms}$&nbsp; is chosen unfavourably.
  
 
*For one of the images the rectangular window is used, for the other the Hanning window.
 
*For one of the images the rectangular window is used, for the other the Hanning window.
Line 64: Line 64:
 
''Hints:''  
 
''Hints:''  
 
*This task belongs to the chapter&nbsp; [[Signal_Representation/Spectrum_Analysis|Spectrum Analysis]].
 
*This task belongs to the chapter&nbsp; [[Signal_Representation/Spectrum_Analysis|Spectrum Analysis]].
*Note that the frequency resolution&nbsp; $f_{\rm A}$&nbsp; is equal to the reciprocal of the adjustable parameter&nbsp; $T_{\rm P}$&nbsp;.  
+
*Note that the frequency resolution&nbsp; $f_{\rm A}$&nbsp; is equal to the reciprocal of the adjustable parameter&nbsp; $T_{\rm P}$.
 +
*Unfortunately, the indices of&nbsp; $f_{\rm A}$&nbsp; and&nbsp; $Y_{\rm A}(f)$ collide.&nbsp; It is obvious that they are not related.&nbsp; Just to be on the safe side, we point this out.
 
   
 
   
  
Line 77: Line 78:
 
- The Hanning window was used for weighting.
 
- The Hanning window was used for weighting.
 
- The DFT parameter&nbsp; $T_{\rm P} = 4\ \text{ms}$&nbsp; was used.
 
- The DFT parameter&nbsp; $T_{\rm P} = 4\ \text{ms}$&nbsp; was used.
+ The DFT spectrum $Y_{\rm A}(f)$ is identical to the actual spectrum $X(f)$.
+
+ The DFT spectrum&nbsp; $Y_{\rm A}(f)$&nbsp; is identical to the actual spectrum&nbsp; $X(f)$.
  
{Using the Hanning window and&nbsp;  $T_{\rm P} = 8 \ \text{ms} $, what is, &nbsp; $Y(f)$&nbsp; when the input spectrum&nbsp; $X(f) = Y_{\rm A}(f)$&nbsp; is applied? <br>Give the weights of the diraclines at&nbsp; $f_1= 1\ \text{kHz}$&nbsp; and&nbsp; $f_2 = 1.125\ \text{kHz}$&nbsp;.
+
{Using the Hanning window and&nbsp;  $T_{\rm P} = 8 \ \text{ms} $, what is&nbsp; $Y(f)$&nbsp; when the input spectrum&nbsp; $X(f) = Y_{\rm A}(f)$&nbsp; is applied? <br>Give the weights of the Dirac lines at&nbsp; $f_1= 1\ \text{kHz}$ &nbsp; &rArr; &nbsp; $G(f_1)$&nbsp; and at &nbsp; $f_2 = 1.125\ \text{kHz}$&nbsp; &rArr; &nbsp; $G(f_2)$.
 
|type="{}"}
 
|type="{}"}
 
$G(f_1 = 1.000 \ \text{kHz})\ = \ $ { 0.625 3% } &nbsp;$\text{V}$
 
$G(f_1 = 1.000 \ \text{kHz})\ = \ $ { 0.625 3% } &nbsp;$\text{V}$
 
$G(f_2 = 1.125 \ \text{kHz})\ = \ $ { 0.5 3% } &nbsp;$\text{V}$
 
$G(f_2 = 1.125 \ \text{kHz})\ = \ $ { 0.5 3% } &nbsp;$\text{V}$
  
{We consider the&nbsp; $1\ \text{kHz}$ cosine signal&nbsp; $x(t)$. Which spectrum -&nbsp; $Y_{\rm B}(f)$&nbsp; or&nbsp; $Y_{\rm C}(f)$&nbsp; – results with the rectangular or the Hanning window, respectively, if the DFT parameter&nbsp;  $T_{\rm P} = 8.5 \ \text{ms}$&nbsp; is chosen unfavourably?
+
{We consider the&nbsp; $1\ \text{kHz}$ cosine signal&nbsp; $x(t)$.&nbsp; Which spectrum -&nbsp; $Y_{\rm B}(f)$&nbsp; or&nbsp; $Y_{\rm C}(f)$&nbsp; – results with the rectangular or the Hanning window, respectively, if the DFT parameter&nbsp;  $T_{\rm P} = 8.5 \ \text{ms}$&nbsp; is chosen unfavourably?
 
|type="()"}
 
|type="()"}
- $Y_{\rm B}(f)$ results with rectangular windowing.
+
- $Y_{\rm B}(f)$&nbsp; results with rectangular windowing.
+ $Y_{\rm B}(f)$ results with the Hanning window.
+
+ $Y_{\rm B}(f)$&nbsp; results with the Hanning window.
  
 
</quiz>
 
</quiz>
Line 93: Line 94:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  <u>Proposed solutions 1 and 4</u> are correct:
+
'''(1)'''&nbsp;  <u>Solutions 1 and 4</u> are correct:
*Using the Hanning window, three Dirac functions should be recognisable even if&nbsp; $x(t)$&nbsp; contains only one frequency &nbsp; ⇒ &nbsp; rectangular window was used.
+
*Using the Hanning window, three Dirac functions should be recognisable even if&nbsp; $x(t)$&nbsp; contains only one frequency &nbsp; ⇒ &nbsp; the rectangular window was used.
*With&nbsp; $T_{\rm P} = 4 \ \text{ms}$&nbsp;, the frequency resolution is&nbsp; $f_{\rm A}= 1/T_{\rm P} = 0.25 \ \text{kHz}$. Thus the frequency&nbsp; $f_2$&nbsp; does not lie in the given grid and&nbsp; $Y(f)$&nbsp; would be composed of very many diraclines. This means: &nbsp; die third statement is wrong.
+
*With&nbsp; $T_{\rm P} = 4 \ \text{ms}$&nbsp;, the frequency resolution is&nbsp; $f_{\rm A}= 1/T_{\rm P} = 0.25 \ \text{kHz}$.&nbsp; Thus the frequency&nbsp; $f_2$&nbsp; does not lie in the given grid and&nbsp; $Y(f)$&nbsp; would be composed of very many Dirac lines.&nbsp; This means: &nbsp; the third statement is wrong.
[[File:P_ID1167__Sig_A_5_4a.png|right|frame|$\text{Example signal 1}$&nbsp; for spectral analysis]]
+
[[File:P_ID1167__Sig_A_5_4a.png|right|frame|Output signal&nbsp; $y(t)$&nbsp; with the rectangular window]]
  
*As can be seen from the graph,&nbsp; $x(t)$&nbsp; has the period duration&nbsp; $T_{\rm 0} = 8 \ \text{ms}$. If one chooses the DFT parameter equal to&nbsp; $T_{\rm P} = 4 \ \text{ms}$&nbsp; (or an integer multiple thereof), the periodic continuation&nbsp; ${\rm P}\{ x(t)\} $&nbsp;  in the interval&nbsp; $|t| \leq T_{\rm P}/2$&nbsp; coincides with&nbsp; $x(t)$&nbsp;, so that the weighting function&nbsp; $w(t)$&nbsp; has no disturbing effect: &nbsp;  
+
*As can be seen from the graph,&nbsp; $x(t)$&nbsp; has the period duration&nbsp; $T_{\rm 0} = 8 \ \text{ms}$.  
 +
*If one chooses the DFT parameter equal to&nbsp; $T_{\rm P} = 4 \ \text{ms}$&nbsp; (or an integer multiple thereof), the periodic continuation&nbsp; ${\rm P}\{ x(t)\} $&nbsp;  in the interval&nbsp; $|t| \leq T_{\rm P}/2$&nbsp; coincides with&nbsp; $x(t)$&nbsp;, so that the weighting function&nbsp; $w(t)$&nbsp; has no disturbing effect.&nbsp; So:
 
*The DFT spectrum&nbsp; $Y(f)$&nbsp; thus agrees with the actual spectrum.  
 
*The DFT spectrum&nbsp; $Y(f)$&nbsp; thus agrees with the actual spectrum.  
  
  
  
'''(2)'''&nbsp; Because of$T_{\rm 0} = 8 \ \text{ms}$&nbsp;, the Hanning spectrum&nbsp; $W(f)$&nbsp;  
+
'''(2)'''&nbsp; Because of&nbsp; $T_{\rm 0} = 8 \ \text{ms}$&nbsp;, the Hanning spectrum&nbsp; $W(f)$&nbsp;  
 
*consists of three Dirac functions at positive frequencies
 
*consists of three Dirac functions at positive frequencies
*and three axisymmetrical diracs at negative frequencies
+
*and three axisymmetrical Diracs at negative frequencies
  
  
 
are composed. For the positive frequencies, the spectral function is:
 
are composed. For the positive frequencies, the spectral function is:
 +
[[File:P_ID1169__Sig_A_5_4b.png|right|frame|Output signal&nbsp; $y(t)$&nbsp; with the Hanning window]]
 
   
 
   
 
:$$W(f) =0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f-f_{\rm A})+ 0.25\cdot {\rm \delta}(f+f_{\rm A})\hspace{0.05cm}.$$
 
:$$W(f) =0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f-f_{\rm A})+ 0.25\cdot {\rm \delta}(f+f_{\rm A})\hspace{0.05cm}.$$
  
The output spectrum results from the convolution between&nbsp; $X(f)$&nbsp; and&nbsp; $W(f)$. At positive frequencies, there are now four diracs with the following weights:
+
The output spectrum results from the convolution between&nbsp; $X(f)$&nbsp; and&nbsp; $W(f)$.&nbsp; At positive frequencies, there are now four Diracs with the following weights:
[[File:P_ID1169__Sig_A_5_4b.png|right|frame|$\text{Example 2}$&nbsp; for spectral analysis]]
 
 
   
 
   
 
:$$\begin{align*} G(f = 0.875\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 = 0.250\, {\rm
 
:$$\begin{align*} G(f = 0.875\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 = 0.250\, {\rm
Line 128: Line 130:
  
  
'''(3)'''&nbsp; <u> The second solution suggestion</u> is correct::
+
'''(3)'''&nbsp; <u> Solution 2</u> is correct:
*The rectangular window then delivers a very strongly distorted result if the window width&nbsp; $T_{\rm P}$&nbsp; (as here) is not adapted to the frequency of the cosine signal.
+
*The rectangular window delivers a very strongly distorted result if the window width&nbsp; $T_{\rm P}$&nbsp; (as here) is not adapted to the cosine frequency.
*In this case, the Hanning window is more suitable.
+
*In this case, the Hanning window is more suitable.&nbsp; Then the measured spectrum&nbsp; $Y_{\rm B}(f)$ results.
 +
* From the spectrum&nbsp; $Y_{\rm C}(f)$&nbsp; the searched $1\ \rm kHz$ line is more difficult to detect.&nbsp; The spectrum&nbsp; $Y_{\rm C}(f)$&nbsp; results after rectangular windowing.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^5.4 Spectrum Analysis^]]
+
[[Category:Signal Representation: Exercises|^5.4 Spectrum Analysis^]]

Revision as of 13:47, 22 September 2021

Examples for spectral analysis

Let the time course of a periodic signal be given in principle:

$$x(t) = A_1 \cdot \cos (2 \pi \cdot f_1 \cdot t) + A_2 \cdot \cos (2 \pi \cdot f_2 \cdot t) \hspace{0.05cm}.$$

Unknown and thus to be estimated are its parameters  $A_1$,  $f_1$,  $A_2$  and  $f_2$.

After weighting the signal with the window function  $w(t)$ , the product  $y(t) = x(t) \cdot w(t)$  is subjected to a  Discrete Fourier Transform  (DFT) with the parameters  $N = 512$  and  $T_{\rm P}$.  The time  $T_{\rm P}$  of the signal section to be analyzed can be set by the user as desired.

Two functions are available for windowing, each of which is zero for  $|t| > T_{\rm P}/2$:

  • The  rectangular window:
$${w} (\nu) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{20}c} -N/2 \le \nu < N/2 \hspace{0.05cm}, \\ {\rm else} \hspace{0.05cm}, \\ \end{array}$$
$$W(f) ={1}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot {f}/{f_{\rm A}})\hspace{0.05cm},$$
  • the  Hanning window:
$${w} (\nu) = \left\{ \begin{array}{c} 0.5 + 0.5 \cdot \cos (2 \pi \cdot {\nu}/{N}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{20}c} -N/2 \le \nu < N/2 \hspace{0.05cm}, \\ {\rm else} \hspace{0.05cm}, \\ \end{array}$$
$$W(f) ={0.5}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f}{f_{\rm A}})+ {0.25}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f-f_{\rm A}}{f_{\rm A}})+ {0.5}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$

Here, $W(f)$  is the Fourier transform of the continuous-time window function  $w(t)$, while  $w(ν)$  indicates the discrete-time weighting function.

In the task, reference is made to various spectral functions  $Y(f)$  for example to

$$Y_{\rm A}(f) = 1\, {\rm V}\cdot {\rm \delta} (f \pm 1\,\,{\rm kHz})+ 0.5\,\, {\rm V}\cdot {\rm \delta} (f \pm 1.125\,\,{\rm kHz}) \hspace{0.05cm}.$$

In the graph, two further spectral functions  $Y_{\rm B}(f)$  and  $Y_{\rm C}(f)$  are shown, which result when a  $1 \ \text{kHz}$  signal is analyzed by DFT and the DFT parameter  $T_{\rm P} = 8.5 \ \text{ms}$  is chosen unfavourably.

  • For one of the images the rectangular window is used, for the other the Hanning window.
  • It is not indicated which graph belongs to which window.





Hints:

  • This task belongs to the chapter  Spectrum Analysis.
  • Note that the frequency resolution  $f_{\rm A}$  is equal to the reciprocal of the adjustable parameter  $T_{\rm P}$.
  • Unfortunately, the indices of  $f_{\rm A}$  and  $Y_{\rm A}(f)$ collide.  It is obvious that they are not related.  Just to be on the safe side, we point this out.


Questions

1

Which of the following statements are true with certainty when the DFT displays the output spectrum  $Y_{\rm A}(f)$ ?

The rectangular window was used for weighting.
The Hanning window was used for weighting.
The DFT parameter  $T_{\rm P} = 4\ \text{ms}$  was used.
The DFT spectrum  $Y_{\rm A}(f)$  is identical to the actual spectrum  $X(f)$.

2

Using the Hanning window and  $T_{\rm P} = 8 \ \text{ms} $, what is  $Y(f)$  when the input spectrum  $X(f) = Y_{\rm A}(f)$  is applied?
Give the weights of the Dirac lines at  $f_1= 1\ \text{kHz}$   ⇒   $G(f_1)$  and at   $f_2 = 1.125\ \text{kHz}$  ⇒   $G(f_2)$.

$G(f_1 = 1.000 \ \text{kHz})\ = \ $

 $\text{V}$
$G(f_2 = 1.125 \ \text{kHz})\ = \ $

 $\text{V}$

3

We consider the  $1\ \text{kHz}$ cosine signal  $x(t)$.  Which spectrum -  $Y_{\rm B}(f)$  or  $Y_{\rm C}(f)$  – results with the rectangular or the Hanning window, respectively, if the DFT parameter  $T_{\rm P} = 8.5 \ \text{ms}$  is chosen unfavourably?

$Y_{\rm B}(f)$  results with rectangular windowing.
$Y_{\rm B}(f)$  results with the Hanning window.


Solution

(1)  Solutions 1 and 4 are correct:

  • Using the Hanning window, three Dirac functions should be recognisable even if  $x(t)$  contains only one frequency   ⇒   the rectangular window was used.
  • With  $T_{\rm P} = 4 \ \text{ms}$ , the frequency resolution is  $f_{\rm A}= 1/T_{\rm P} = 0.25 \ \text{kHz}$.  Thus the frequency  $f_2$  does not lie in the given grid and  $Y(f)$  would be composed of very many Dirac lines.  This means:   the third statement is wrong.
Output signal  $y(t)$  with the rectangular window
  • As can be seen from the graph,  $x(t)$  has the period duration  $T_{\rm 0} = 8 \ \text{ms}$.
  • If one chooses the DFT parameter equal to  $T_{\rm P} = 4 \ \text{ms}$  (or an integer multiple thereof), the periodic continuation  ${\rm P}\{ x(t)\} $  in the interval  $|t| \leq T_{\rm P}/2$  coincides with  $x(t)$ , so that the weighting function  $w(t)$  has no disturbing effect.  So:
  • The DFT spectrum  $Y(f)$  thus agrees with the actual spectrum.


(2)  Because of  $T_{\rm 0} = 8 \ \text{ms}$ , the Hanning spectrum  $W(f)$ 

  • consists of three Dirac functions at positive frequencies
  • and three axisymmetrical Diracs at negative frequencies


are composed. For the positive frequencies, the spectral function is:

Output signal  $y(t)$  with the Hanning window
$$W(f) =0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f-f_{\rm A})+ 0.25\cdot {\rm \delta}(f+f_{\rm A})\hspace{0.05cm}.$$

The output spectrum results from the convolution between  $X(f)$  and  $W(f)$.  At positive frequencies, there are now four Diracs with the following weights:

$$\begin{align*} G(f = 0.875\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 = 0.250\, {\rm V}, \\ G(f = f_1 = 1.000\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.5 + 0.5\, {\rm V}\cdot 0.25 \hspace{0.15 cm}\underline{ = 0.625\, {\rm V}}, \\ G(f = f_2 = 1.125\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 + 0.5\, {\rm V}\cdot 0.5 \hspace{0.15 cm}\underline{= 0.500\, {\rm V}}, \\ G(f = 1.250\,{\rm kHz}) & = 0.5\, {\rm V}\cdot 0.25 = 0.125\, {\rm V} \hspace{0.05cm}.\end{align*}$$

The graph shows the attenuation of the edges by the weighting function  $w(t)$  of the Hanning window.


(3)  Solution 2 is correct:

  • The rectangular window delivers a very strongly distorted result if the window width  $T_{\rm P}$  (as here) is not adapted to the cosine frequency.
  • In this case, the Hanning window is more suitable.  Then the measured spectrum  $Y_{\rm B}(f)$ results.
  • From the spectrum  $Y_{\rm C}(f)$  the searched $1\ \rm kHz$ line is more difficult to detect.  The spectrum  $Y_{\rm C}(f)$  results after rectangular windowing.