Difference between revisions of "Digital Signal Transmission/Approximation of the Error Probability"

From LNTwww
m (Text replacement - "”" to """)
(44 intermediate revisions by 6 users not shown)
Line 6: Line 6:
 
}}
 
}}
  
== Optimale Entscheidung bei binärer Übertragung (1) ==
+
== Optimale Entscheidung bei binärer Übertragung==
 
<br>
 
<br>
Wir gehen hier von einem Übertragungssystem aus, das wie folgt charakterisiert werden kann: <b><i>r</i></b> = <b><i>s</i></b> + <b><i>n</i></b>:
+
Wir gehen hier von einem Übertragungssystem aus, das wie folgt charakterisiert werden kann: &nbsp; $\boldsymbol{r} = \boldsymbol{s} + \boldsymbol{n}$. Dieses System weist folgende Eigenschaften auf:
*Der das Übertragungssystem vollständig beschreibende Vektorraum wird von <i>N</i> = 2 zueinander orthogonalen Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) aufgespannt.<br>
+
*Der das Übertragungssystem vollständig beschreibende Vektorraum wird von &nbsp;$N = 2$&nbsp; zueinander orthogonalen Basisfunktionen&nbsp; $\varphi_1(t)$&nbsp; und&nbsp; $\varphi_2(t)$&nbsp; aufgespannt.<br>
  
*Demzufolge ist auch die Wahrscheinlichkeitsdichtefunktion des additiven und weißen Gaußschen Rauschens zweidimensional anzusetzen, gekennzeichnet durch den Vektor <b><i>n</i></b> = (<i>n</i><sub>1</sub>, <i>n</i><sub>2</sub>).<br>
+
*Demzufolge ist auch die Wahrscheinlichkeitsdichtefunktion des additiven und weißen Gaußschen Rauschens zweidimensional anzusetzen, gekennzeichnet durch den Vektor&nbsp; $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.<br>
  
*Es gibt nur zwei mögliche Sendesignale (<i>M</i> = 2), die durch die beiden Vektoren <b><i>s</i></b><sub>0</sub> = (<i>s</i><sub>01</sub>, <i>s</i><sub>02</sub>) und <b><i>s</i></b><sub>1</sub> = (<i>s</i><sub>11</sub>, <i>s</i><sub>12</sub>) beschrieben werden:
+
*Es gibt nur zwei mögliche Sendesignale&nbsp; $(M = 2)$, die durch die beiden Vektoren&nbsp; $\boldsymbol{ s_0} = (s_{01},\hspace{0.05cm}s_{02})$&nbsp; und&nbsp; $\boldsymbol{ s_1} = (s_{11},\hspace{0.05cm}s_{12})$&nbsp; beschrieben werden:
 +
:$$s_0(t)= s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},\hspace{1cm}s_1(t) = s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.$$
  
::<math>s_0(t) \hspace{-0.1cm}  =  \hspace{-0.1cm} s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},</math>
+
*Die beiden Nachrichten&nbsp; $m_0 \ \Leftrightarrow \ \boldsymbol{ s_0}$&nbsp; und &nbsp;$m_1 \ \Leftrightarrow \ \boldsymbol{ s_1}$&nbsp; sind nicht notwendigermaßen gleichwahrscheinlich.<br>
::<math>s_1(t) \hspace{-0.1cm}  =  \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.</math>
 
  
*Die beiden Nachrichten <i>m</i><sub>0</sub> &#8660; <b><i>s</i></b><sub>0</sub> und <i>m</i><sub>1</sub> &#8660; <i>'''s'''</i><sub>1</sub> sind nicht notwendigermaßen gleichwahrscheinlich.<br>
+
*Aufgabe des Entscheiders ist es, einen Schätzwert für den aktuellen Empfangsvektor&nbsp; $\boldsymbol{r}$&nbsp; nach der&nbsp; [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Fundamentaler_Ansatz_zum_optimalen_Empf.C3.A4ngerentwurf_.281.29 |MAP&ndash;Entscheidungsregel]]&nbsp; anzugeben. Diese lautet im vorliegenden Fall:
 +
:$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} \big[ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm}|\hspace{0.05cm} m_i )\big ]
 +
\hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}\hspace{0.3cm}{\rm mit}\hspace{0.3cm}
 +
\boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \hspace{0.05cm}\rho_2)
 +
\hspace{0.05cm}.$$
 +
 
 +
Im hier betrachteten Sonderfall&nbsp; $N = 2$&nbsp; und&nbsp; $M = 2$&nbsp; partitioniert der Entscheider den zweidimensionalen Raum in die zwei disjunkten Gebiete&nbsp; $I_0$&nbsp; (rot hinterlegt) und&nbsp; $I_1$&nbsp; (blau), wie die folgende Grafik verdeutlicht. Liegt der Empfangswert in&nbsp; $I_0$, so wird als Schätzwert&nbsp; $m_0$&nbsp; ausgegeben, andernfalls&nbsp; $m_1$.
 +
 
 +
[[File:P ID2019 Dig T 4 3 S1 version1.png|center|frame|Entscheidungsregionen für gleiche (links) bzw. ungleiche (rechts) Auftrittswahrscheinlichkeiten|class=fit]]
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Herleitung und Bildbeschreibung:}$&nbsp;
 +
Beim AWGN&ndash;Kanal und&nbsp;  $M = 2$&nbsp; lautet somit die Entscheidungsregel:
 +
 
 +
Man entscheide sich immer dann für die Nachricht&nbsp; $m_0$, falls folgende Bedingung erfüllt ist:
 +
 
 +
:$${\rm Pr}( m_0) \cdot  {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot \vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 \right ]
 +
> {\rm Pr}( m_1) \cdot  {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2 \right ]
 +
\hspace{0.05cm}.$$
 +
 
 +
Die Grenzlinie zwischen den beiden Entscheidungsregionen&nbsp; $I_0$&nbsp; und&nbsp; $I_1$&nbsp; erhält man, wenn man in obiger Gleichung das Größerzeichen durch das Gleichheitszeichen ersetzt und die Gleichung etwas umformt:
 +
 
 +
:$$\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2  - 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}\big [{\rm Pr}( m_0)\big ] =
 +
\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2  - 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}\big [{\rm Pr}( m_1)\big ]$$
 +
:$$\Rightarrow \hspace{0.3cm} \vert \hspace{-0.05cm} \vert  \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2  - \vert \hspace{-0.05cm} \vert \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 
 +
+ 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{ {\rm Pr}( m_0)}{ {\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
 +
 
 +
Aus dieser Darstellung erkennt man:
 +
*Die Grenzkurve zwischen den Regionen&nbsp; $I_0$&nbsp; und&nbsp; $I_1$&nbsp; ist eine Gerade, da die Bestimmungsgleichung linear im Empfangsvektor&nbsp; $\boldsymbol{ \rho } = (\rho_1, \hspace{0.05cm}\rho_2)$&nbsp; ist.<br>
 +
 
 +
*Bei gleichwahrscheinlichen Symbolen verläuft die Grenze genau in der Mitte zwischen&nbsp; $\boldsymbol{ s }_0$&nbsp; und&nbsp; $\boldsymbol{ s }_1$&nbsp; und um &nbsp;$90^\circ$&nbsp; verdreht gegenüber der Verbindungslinie zwischen den Sendepunkten (linke Grafik):
 +
 
 +
:$$\vert \hspace{-0.05cm} \vert  \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert ^2  - \vert \hspace{-0.05cm} \vert  \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert ^2  = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
 +
 
 +
*Für&nbsp; ${\rm Pr}(m_0) > {\rm Pr}(m_1)$&nbsp; ist die Entscheidungsgrenze in Richtung des unwahrscheinlicheren Symbols&nbsp; $\boldsymbol{ s }_1$&nbsp; verschoben, und zwar um so mehr, je größer die AWGN&ndash;Streuung&nbsp; $\sigma_n$&nbsp; ist.<br>
 +
 
 +
*Die grün&ndash;durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen&nbsp; $I_0$&nbsp; (rot) und&nbsp;  $I_1$&nbsp; (blau) gelten für die (normierte) Streuung&nbsp; $\sigma_n = 1$&nbsp; und die gestrichelten Grenzlinien für&nbsp; $\sigma_n = 0$&nbsp; bzw.&nbsp; $\sigma_n = 2$.<br>}}
 +
 
 +
==Der Sonderfall gleichwahrscheinlicher Binärsymbolen ==
 +
<br>
 +
Wir gehen weiterhin von einem Binärsystem aus&nbsp; $(M = 2)$, betrachten aber nun den einfachen Fall, dass dieses durch eine einzige Basisfunktion beschrieben werden kann&nbsp;  $(N = 1)$. Die Fehlerwahrscheinlichkeit hierfür wurde bereits im Abschnitt&nbsp; [[Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_bei_Basisband%C3%BCbertragung#Definition_der_Bitfehlerwahrscheinlichkeit|Definition der Bitfehlerwahrscheinlichkeit]]&nbsp; berechnet.<br>
 +
 
 +
Mit der für das vierte Hauptkapitel gewählten Nomenklatur und Darstellungsform ergibt sich folgende Konstellation:
 +
*Der Empfangswert&nbsp; $r = s + n$&nbsp; ist nunmehr ein Skalar und setzt sich aus dem Sendesignal&nbsp; $s \in \{s_0, \hspace{0.05cm}s_1\}$&nbsp; und dem Rauschterm&nbsp; $n$&nbsp; additiv zusammen. Die Abszisse&nbsp; $\rho$&nbsp; bezeichnet eine Realisierung von&nbsp; $r$.<br>
 +
 
 +
*Die Abszisse ist zudem auf die Bezugsgröße&nbsp; $\sqrt{E}$&nbsp; normiert, wobei hier die Normierungsenergie&nbsp; $E$&nbsp; keine herausgehobene, physikalisch interpretierbare Bedeutung hat.<br>
 +
 
 +
*Der Rauschterm&nbsp; $n$&nbsp;  ist gaußverteilt mit Mittelwert&nbsp; $m_n = 0$&nbsp; und Varianz&nbsp; $\sigma_n^2$. Die Wurzel aus der Varianz&nbsp; $(\sigma_n)$&nbsp; wird als der Effektivwert  oder die Streuung bezeichnet.<br>
 +
 
 +
*Die Entscheidergrenze&nbsp; $G$&nbsp; unterteilt den gesamten Wertebereich von&nbsp; $r$&nbsp; in die zwei Teilbereiche&nbsp; $I_0$&nbsp; $($in dem unter anderem&nbsp; $s_0$&nbsp; liegt$)$ und&nbsp; $I_1$&nbsp; $($mit dem Signalwert &nbsp;$s_1)$.<br>
 +
 
 +
*Ist&nbsp; $\rho > G$, so liefert der Entscheider den Schätzwert&nbsp; $m_0$, andernfalls&nbsp; $m_1$. Hierbei ist vorausgesetzt, dass die Nachricht&nbsp; $m_i$&nbsp; mit dem Sendesignal&nbsp; $s_i$&nbsp; eineindeutig zusammenhängt: &nbsp; $m_i \Leftrightarrow s_i$.
 +
 
 +
[[File:P ID2020 Dig T 4 3 S2 version1.png||center|frame|Bedingte Dichtefunktionen bei gleichwahrscheinlichen Symbolen|class=fit]]
 +
 
 +
Die Grafik zeigt die bedingten (eindimensionalen) Wahrscheinlichkeitsdichtefunktionen&nbsp; $p_{\hspace{0.02cm}r\hspace{0.05cm} \vert \hspace{0.05cm}m_0}$&nbsp; und&nbsp;  $p_{\hspace{0.02cm}r\hspace{0.05cm} \vert \hspace{0.05cm}m_1}$&nbsp; für den AWGN&ndash;Kanal, wobei gleiche Symbolwahrscheinlichkeiten vorausgesetzt sind: &nbsp; ${\rm Pr}(m_0) =  {\rm Pr}(m_1)  = 0.5$. Die (optimale) Entscheidergrenze ist somit&nbsp; $G = 0$. Man erkennt aus dieser Darstellung:
 +
*Ist&nbsp; $m = m_0$&nbsp; und damit&nbsp; $s = s_0 = 2 \cdot E^{1/2}$, so kommt es nur dann zu einer Fehlentscheidung, wenn&nbsp; $\eta$, die Realisierung der Rauschgröße&nbsp; $n$, kleiner ist als&nbsp; $-2 \cdot E^{1/2}$. In diesem Fall ist&nbsp; $\rho < 0$, wobei&nbsp; $\rho$&nbsp; eine Realisierung des Empfangswertes&nbsp; $r$&nbsp; bezeichnet.
 +
*Bei&nbsp; $m = m_1$ &nbsp; &rArr; &nbsp; $s = s_1 = -2 \cdot E^{1/2}$&nbsp; kommt es dagegen immer dann zu einer Fehlentscheidung, wenn&nbsp; $\eta$&nbsp; größer ist als&nbsp; $+2 \cdot E^{1/2}$. In diesem Fall ist&nbsp; $\rho > 0$.
 +
 
 +
 
 +
== Fehlerwahrscheinlichkeit bei gleichwahrscheinlichen Symbolen ==
 +
<br>
 +
Es gelte&nbsp; ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$. Bei AWGN&ndash;Rauschen mit Effektivwert (Streuung)&nbsp; $\sigma_n$&nbsp; erhält man, wie bereits im Abschnitt&nbsp; [[Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_bei_Basisband%C3%BCbertragung#Definition_der_Bitfehlerwahrscheinlichkeit| Definition der Bitfehlerwahrscheinlichkeit]]&nbsp; mit anderer Nomenklatur berechnet wurde, für die Wahrschenlichkeit einer Fehlentscheidung&nbsp; $(\cal E)$&nbsp; unter der Bedingung, dass die Nachricht&nbsp; $m_0$&nbsp; gesendet wurde:
 +
 
 +
:$${\rm Pr}({ \cal E}\hspace{0.05cm} \vert \hspace{0.05cm} m_0) = \int_{-\infty}^{G = 0} p_{r \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \rho } \hspace{0.05cm} \vert \hspace{0.05cm}m_0 ) \,{\rm d} \rho =  \int_{-\infty}^{-  s_0 } p_{{ n} \hspace{0.05cm}\vert\hspace{0.05cm}m_0 } ({ \eta } \hspace{0.05cm}|\hspace{0.05cm}m_0 ) \,{\rm d} \eta = \int_{-\infty}^{- s_0 } p_{{ n}  } ({ \eta }  ) \,{\rm d} \eta =
 +
\int_{ s_0 }^{\infty} p_{{ n}  } ({ \eta }  ) \,{\rm d} \eta = {\rm Q} \left ( {s_0 }/{\sigma_n} \right )
 +
\hspace{0.05cm}.$$
 +
 
 +
Bei der Herleitung der Gleichung wurde berücksichtigt, dass das AWGN&ndash;Rauschen&nbsp; $\eta$&nbsp; unabhängig vom Signal &nbsp;$(m_0$&nbsp; oder&nbsp; $m_1)$&nbsp; ist und eine symmetrische WDF besitzt. Verwendet wurde zudem das komplementäre Gaußsche Fehlerintegral
 +
:$${\rm Q}(x) =  \frac{1}{\sqrt{2\pi}}  \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u
 +
\hspace{0.05cm}.$$
 +
 
 +
Entsprechend gilt für&nbsp; $m = m_1$ &nbsp; &rArr; &nbsp; $s = s_1 = -2 \cdot E^{1/2}$:
 +
:$${\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1) =  \int_{0}^{\infty} p_{{ r} \hspace{0.05cm}\vert\hspace{0.05cm}m_1 } ({ \rho } \hspace{0.05cm}\vert\hspace{0.05cm}m_1 ) \,{\rm d} \rho =  \int_{- s_1 }^{\infty} p_{{ n}  } (\boldsymbol{ \eta }  ) \,{\rm d} \eta = {\rm Q} \left ( {- s_1 }/{\sigma_n} \right )
 +
\hspace{0.05cm}.$$
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp; Mit dem Abstand&nbsp; $d = s_1 - s_0$&nbsp; der Signalraumpunkte kann man die Ergebnisse zusammenfassen, wobei noch&nbsp; ${\rm Pr}(m_0) + {\rm Pr}(m_1) = 1$&nbsp; zu berücksichtigen ist:
 +
:$${\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0) =  {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1) = {\rm Q} \big ( {d}/(2{\sigma_n}) \big )$$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_0)  + {\rm Pr}(m_1) \cdot {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1)= \big [ {\rm Pr}(m_0) + {\rm Pr}(m_1) \big ] \cdot
 +
{\rm Q}  \big [ {d}/(2{\sigma_n}) \big ] = {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] \hspace{0.05cm}.$$
 +
 
 +
''Hinweise:''
 +
*Diese Gleichung gilt unter der Voraussetzung&nbsp; $G = 0$&nbsp; ganz allgemein, also auch für&nbsp; ${\rm Pr}(m_0) \ne {\rm Pr}(m_1)$.
 +
*Bei&nbsp; [[Digital_Signal_Transmission/Approximation_der_Fehlerwahrscheinlichkeit#Optimale_Schwelle_bei_nicht_gleichwahrscheinlichen_Symbolen|nicht gleichwahrscheinlichen Symbolen]]&nbsp; lässt sich allerdings die Fehlerwahrscheinlichkeit durch eine andere Entscheidergrenze verkleinern.<br>
 +
*Die hier genannte Gleichung gilt auch dann, wenn die Signalraumpunkte keine Skalare sind, sondern durch die Vektoren&nbsp; $\boldsymbol{ s}_0$&nbsp; und&nbsp; $\boldsymbol{ s}_1$&nbsp; beschrieben werden.
 +
*Der  Abstand&nbsp; $d$&nbsp; ergibt sich dann als die Norm des Differenzvektors: &nbsp; $d = \vert \hspace{-0.05cm} \vert \hspace{0.05cm} \boldsymbol{ s}_1  - \boldsymbol{ s}_0 \hspace{0.05cm} \vert \hspace{-0.05cm} \vert
 +
\hspace{0.05cm}.$}}
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 1:}$&nbsp; Betrachten wir nochmals die Signalraumkonstellation von der&nbsp; [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Optimale_Entscheidung_bei_bin.C3.A4rer_.C3.9Cbertragung_.281.29| ersten Kapitelseite]]&nbsp; (untere Grafik) mit den Werten
 +
 
 +
[[File:Dig_T_4_3_S2b_version2.png|right|frame|Zwei Signalraumkonstellationen|class=fit]] 
 +
*$\boldsymbol{ s}_0/E^{1/2}  = (3.6, \hspace{0.05cm}0.8)$ und
 +
*$\boldsymbol{ s}_1/E^{1/2}  = (0.4, \hspace{0.05cm}3.2)$.
 +
 
 +
 
 +
Hier beträgt der Abstand der Signalraumpunkte
 +
 
 +
:$$d = \vert \hspace{-0.05cm} \vert s_1 - s_0 \vert \hspace{-0.05cm} \vert = \sqrt{E \cdot (0.4 - 3.6)^2 + E \cdot (3.2 - 0.8)^2} = 4 \cdot \sqrt {E}\hspace{0.05cm}.$$
 +
 
 +
Es ergibt sich also der genau gleiche Wert wie für die obere Konstellation mit
 +
*$\boldsymbol{ s}_0/E^{1/2}  = (2, \hspace{0.05cm}0)$ und
 +
*$\boldsymbol{ s}_1/E^{1/2}  = (-2, \hspace{0.05cm}0)$. <br>
  
*Aufgabe des Entscheiders ist es nun, für den gegebenen Empfangsvektor <b><i>r</i></b> einen Schätzwert nach der [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Fundamentaler_Ansatz_zum_optimalen_Empf.C3.A4ngerentwurf_.281.29 MAP&ndash;Entscheidungsregel] anzugeben. Diese lautet im vorliegenden Fall:
 
  
::<math>\hat{m} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_i ) ]
+
Die Abbildungen zeigen diese beiden Konstellationen und lassen folgende Gemeinsamkeiten bzw. Unterschiede erkennen, wobei jeweils von der AWGN&ndash;Rauschvarianz&nbsp; $\sigma_n^2 = N_0/2$&nbsp; ausgegangen wird. Die Kreise in der Grafik veranschaulichen die zirkuläre Symmetrie von 2D&ndash;AWGN&ndash;Rauschen.
\hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}\hspace{0.3cm}{\rm mit}\hspace{0.3cm}
+
*Wie bereits gesagt, sind sowohl der Abstand der Signalpunkte von der Entscheidungsgeraden&nbsp; $(d/2 = 2 \cdot \sqrt {E})$&nbsp; als auch der AWGN&ndash;Kennwert&nbsp;  $\sigma_n$&nbsp; in beiden Fällen gleich.<br>
\boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \rho_2)
 
\hspace{0.05cm}.</math>
 
  
Im hier betrachteten Sonderfall <i>N</i> = 2 und <i>M</i> = 2 partitioniert der Entscheider den zweidimensionalen Raum in die zwei disjunkten Gebiete <i>I</i><sub>0</sub> und <i>I</i><sub>1</sub>, wie in der nachfolgenden Grafik verdeutlicht. Liegt der Empfangswert in <i>I</i><sub>0</sub>, so wird als Schätzwert <i>m</i><sub>0</sub> ausgegeben, andernfalls <i>m</i><sub>1</sub>.
+
*Daraus folgt: &nbsp; Die beiden Anordnungen führen zur gleichen Fehlerwahrscheinlichkeit, wenn man den Parameter&nbsp; $E$&nbsp; (eine Art Normierungsenergie) konstant lässt:
  
[[File:P ID2019 Dig T 4 3 S1 version1.png|Entscheidungsregionen für gleiche (links) bzw. ungleiche (rechts) Auftrittswahrscheinlichkeiten|class=fit]]<br>
+
:$${\rm Pr} ({\rm Symbolfehler}) = {\rm Pr}({ \cal E} ) =   {\rm Q} \big [ {d}/(2{\sigma_n}) \big ]\hspace{0.05cm}.$$
  
Die Herleitung und Bildbeschreibung folgt auf der nächsten Seite.<br>
+
*Die <i>mittlere Energie pro Symbol</i> &nbsp;$(E_{\rm S})$&nbsp; ergibt sich für die obere Konstellation zu
 +
:$$E_{\rm S} = 1/2 \cdot \vert \hspace{-0.05cm} \vert s_0 \vert \hspace{-0.05cm} \vert^2 + 1/2 \cdot \vert \hspace{-0.05cm} \vert s_1 \vert \hspace{-0.05cm} \vert^2 = E/2 \cdot \big[(+2)^2 + (-2)^2\big] = 4 \cdot  {E}\hspace{0.05cm}.$$
 +
*Bei der unteren Konstellation erhält man in gleicher Weise:
 +
:$$E_{\rm S} = \ \text{...} \ = E/2 \cdot \big[(3.6)^2 + (0.8)^2\big] + E/2 \cdot \big[(0.4)^2 + (3.2)^2 \big] = 12 \cdot  {E}\hspace{0.05cm}.$$
 +
*Bei gegebener <i>mittlerer Energie pro Symbol</i> &nbsp;$(E_{\rm S})$&nbsp; ist demnach die obere Konstellation der unteren deutlich überlegen: &nbsp; Die gleiche Fehlerwahrscheinlichkeit ergibt sich mit einem Drittel der aufzuwendenden Energie pro Symbol. Auf diesen Sachverhalt wird in der&nbsp; [[Aufgaben:Aufgabe_4.06Z:_Signalraumkonstellationen|Aufgabe 4.6Z]]&nbsp; noch im Detail eingegangen. }}<br>
  
== Optimale Entscheidung bei binärer Übertragung (2) ==
+
== Optimale Schwelle bei nicht gleichwahrscheinlichen  Symbolen ==
 
<br>
 
<br>
Beim AWGN&ndash;Kanal und <i>M</i> = 2 lautet somit die Entscheidungsregel: Man entscheide sich immer dann für die Nachricht <i>m</i><sub>0</sub>, falls folgende Bedingung erfüllt ist:
+
Gilt&nbsp; ${\rm Pr}(m_0) \ne {\rm Pr}(m_1)$, so kann man durch eine Verschiebung der Entscheidungsgrenze&nbsp; $G$&nbsp; eine etwas kleinere Fehlerwahrscheinlichkeit erreichen. Die nachfolgenden Ergebnisse werden ausführlich in der Musterlösung zur&nbsp; [[Aufgaben:Aufgabe_4.07:_Nochmals_Entscheidungsgrenzen|Aufgabe 4.7]]&nbsp; hergeleitet:
 +
*Bei ungleichen Symbolwahrscheinlichkeiten liegt die optimale Entscheidungsgrenze&nbsp; $G_{\rm opt}$&nbsp; zwischen den Regionen&nbsp; $I_0$&nbsp; und&nbsp; $I_1$&nbsp; näher beim unwahrscheinlicheren Symbol.<br>
 +
 
 +
*Die normierte optimale Verschiebung gegenüber der Grenze&nbsp; $G = 0$&nbsp; bei gleichwahrscheinlichen Symbolen beträgt
 +
 
 +
::<math>\gamma_{\rm opt} = \frac{G_{\rm opt}}{s_0 } = 2 \cdot  \frac{  \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} \hspace{0.05cm}.</math>
  
:<math>{\rm Pr}( m_0) \cdot  {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2 \right ]
+
*Die Fehlerwahrscheinlichkeit ist dann gleich
> {\rm Pr}( m_1) \cdot  {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2 \right ]
 
\hspace{0.05cm}.</math>
 
  
Die Grenzlinie zwischen den beiden Entscheidungsregionen <i>I</i><sub>0</sub> und <i>I</i><sub>1</sub> erhält man, wenn man in obiger Gleichung das Größerzeichen durch das Gleichheitszeichen ersetzt und die Gleichung etwas umformt:
+
:$${\rm Pr}({ \cal E} ) =  {\rm Pr}(m_0) \cdot {\rm Q} \big[  {d}/(2{\sigma_n})  \cdot (1 - \gamma_{\rm opt}) \big ]
 +
+ {\rm Pr}(m_1) \cdot {\rm Q} \big [ {d}/(2{\sigma_n})  \cdot (1 + \gamma_{\rm opt}) \big ]\hspace{0.05cm}.$$
  
:<math>|| \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2  - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_0)] =
+
[[File:P ID2024 Dig T 4 3 S3 version2.png|right|frame|Dichtefunktionen für gleiche/ungleiche Symbolwahrscheinlichkeiten|class=fit]]
|| \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^- 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_1)] </math>
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp; Der formale Parameter&nbsp; $\rho$&nbsp; (Abszisse) kennzeichnet wieder eine Realisierung der AWGN&ndash;Zufallsgröße&nbsp; $r = s + n$.
 +
 +
Für das Folgende gelte weiter:
 +
:$$\boldsymbol{ s }_0 = (2 \cdot \sqrt{E}\hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E}, \hspace{0.1cm} 0)$$
 +
:$$ \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E}\hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.$$
  
:<math>\Rightarrow \hspace{0.3cm} ||  \boldsymbol{ s }_1 ||^2  - ||  \boldsymbol{ s }_0 ||^2 + 2  \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.</math>
+
*Bei gleichwahrscheinlichen Symbolen &nbsp; &rArr; &nbsp; ${\rm Pr}( m_0) = {\rm Pr}( m_1) = 1/2$&nbsp; ergibt sich die optimale Entscheidungsgrenze zu&nbsp; $G_{\rm opt} = 0$&nbsp; (siehe obere Skizze). Damit erhält man für die Fehlerwahrscheinlichkeit:
  
Aus dieser Gleichung erkennt man:
+
:$${\rm Pr}({ \cal E} ) =  {\rm Q}  \big [ {d}/(2{\sigma_n}) \big ] = {\rm Q} (2) \approx 2.26\% \hspace{0.05cm}.$$
*Die Grenzkurve zwischen den Regionen <i>I</i><sub>0</sub> und <i>I</i><sub>1</sub> ist eine Gerade, da die Bestimmungsgleichung linear im Empfangsvektor <b><i>&rho;</i></b> = (<i>&rho;</i><sub>1</sub>, <i>&rho;</i><sub>2</sub>) ist.<br>
 
  
*Bei gleichwahrscheinlichen Symbolen verläuft die Grenze genau in der Mitte zwischen <b><i>s</i></b><sub>0</sub> und <b><i>s</i></b><sub>1</sub> und um 90&deg; verdreht gegenüber der Verbindungslinie zwischen den Sendepunkten (linke Grafik):
+
*Nun betrachten wir mit&nbsp; ${\rm Pr}( m_0) = 3/4\hspace{0.05cm},\hspace{0.1cm}{\rm Pr}( m_1) = 1/4\hspace{0.05cm}$&nbsp; ungleiche Symbolwahrscheinlichkeiten (untere Skizze).  Die weiteren Systemgrößen seien gegenüber der oberen Grafik unverändert. In diesem Fall beträgt der optimale (normierte) Verschiebungsfaktor
  
::<math>|| \boldsymbol{ s }_1 ||^2 - ||  \boldsymbol{ s }_0 ||^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.</math>
+
::<math>\gamma = 2 \cdot \frac{   \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{ {\rm Pr}( m_1)}{ {\rm Pr}( m_0)} = 2 \cdot
 +
\frac{ E}{16  \cdot E} \cdot {\rm ln} \hspace{0.15cm} \frac{1/4}{3/4 } \approx - 0.14
 +
\hspace{0.05cm},</math>
  
*Für Pr(<i>m</i><sub>0</sub>) > Pr(<i>m</i><sub>1</sub>) ist die Entscheidungsgrenze in Richtung des unwahrscheinlicheren Symbols (<b><i>s</i></b><sub>1</sub>) verschoben, und zwar um so mehr, je größer die AWGN&ndash;Streuung <i>&sigma;<sub>n</sub></i> ist.<br><br>
+
:was einer Verschiebung um&nbsp; $14\%$&nbsp; hin zum unwahrscheinlicheren Symbol&nbsp; $\boldsymbol {s}_1$&nbsp; (also nach links) bedeutet. Dadurch wird die Fehlerwahrscheinlichkeit geringfügig kleiner als bei gleichwahrscheinlichen Symbolen:
  
[[File:P ID2027 Dig T 4 3 S1 version1.png|Entscheidungsregionen für gleiche (links) bzw. ungleiche (rechts) Auftrittswahrscheinlichkeiten|class=fit]]<br>
+
::<math>{\rm Pr}({ \cal E} )= 0.75 \cdot {\rm Q} \left ( 2 \cdot 1.14 \right ) + 0.25 \cdot {\rm Q} \left ( 2 \cdot 0.86 \right ) = 0.75 \cdot 0.0113 + 0.25 \cdot 0.0427 \approx 1.92\% \hspace{0.05cm}.</math>
  
Die grün&ndash;durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen <i>I</i><sub>0</sub> (rot) und  <i>I</i><sub>1</sub> (blau) gelten für die Streuung <i>&sigma;<sub>n</sub></i> = 1 und die gestrichelten Grenzlinien für <i>&sigma;<sub>n</sub></i> = 0 bzw. <i>&sigma;<sub>n</sub></i> = 2.<br>
+
Man erkennt aus diesen Zahlenwerten:
 +
*Durch die Schwellenverschiebung wird nun zwar das Symbol $\boldsymbol&nbsp; {s}_1$&nbsp; stärker verfälscht, das wahrscheinlichere Symbol&nbsp; $\boldsymbol {s}_0$&nbsp; jedoch überproportional weniger.<br>
  
== Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (1) ==
+
*Das Ergebnis sollte aber nicht zu Fehlinterpretationen führen. Im unsymmetrischen Fall &nbsp;&#8658;&nbsp; ${\rm Pr}( m_0) \ne {\rm Pr}( m_1)$&nbsp; ergibt sich zwar eine kleinere Fehlerwahrscheinlichkeit  als für&nbsp; ${\rm Pr}( m_0) ={\rm Pr}( m_1) = 0.5$, aber mit jedem Symbol kann dann auch nur weniger Information übertragen werden.
 +
* Bei den gewählten Zahlenwerten&nbsp; $0.81 \ \rm bit/Symbol$&nbsp; statt &nbsp;$1\ \rm  bit/Symbol$. Aus informationstheoretischer Sicht wäre&nbsp; ${\rm Pr}( m_0) ={\rm Pr}( m_1)$&nbsp; optimal.}}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp;
 +
*Im symmetrischen Fall &nbsp; &rArr; &nbsp; ${\rm Pr}( m_0) ={\rm Pr}( m_1)$&nbsp; können zur Entscheidungsfindung die herkömmlichen bedingten WDF&ndash;Werte&nbsp; $p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m } ( \rho \hspace{0.05cm}\vert \hspace{0.05cm}m_i )$&nbsp; herangezogen werden.
 +
*Im unsymmetrischen Fall &nbsp; &rArr; &nbsp;  ${\rm Pr}( m_0) \ne {\rm Pr}( m_1)$&nbsp;  müssen diese Funktionen vorher gewichtet werden: &nbsp; ${\rm Pr}(m_i) \cdot p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m_i } ( \rho \hspace{0.05cm}\vert \hspace{0.05cm}m_i )$.
 +
 
 +
Im Folgenden wird dieser Sachverhalt berücksichtigt.}}
 +
 
 +
== Entscheidungsregionen im nichtbinären Fall ==
 
<br>
 
<br>
Wir gehen weiterhin von einem Binärsystem aus (<i>M</i> = 2), betrachten aber nun den einfachen Fall, dass dieses durch eine einzige Basisfunktion beschrieben werden kann (<i>N</i> = 1). Die Fehlerwahrscheinlichkeit hierfür wurde bereits in Kapitel 1.2 berechnet.<br>
+
Allgemein partitionieren die Entscheidungsregionen&nbsp; $I_i$&nbsp; den &nbsp;$N$&ndash;dimensionalen reellen Raum in&nbsp; $M$&nbsp; zueinander disjunkte Gebiete. $I_i$&nbsp; ist dabei definiert als die Menge aller Punkte, die zum Schätzwert&nbsp; $m_i$&nbsp; führen:
  
Mit der für Kapitel 4 gewählten Nomenklatur und Darstellungsform ergibt sich folgende Konstellation:
+
::<math>\boldsymbol{ \rho } \in I_i \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} \hat{m} = m_i, \hspace{0.3cm}{\rm wobei}\hspace{0.3cm}I_i = \left \{ \boldsymbol{ \rho } \in { \cal R}^N \hspace{0.05cm} | \hspace{0.05cm}
*Der Empfangswert <i>r</i> = <i>s</i> + <i>n</i> &ndash; nunmehr ein Skalar &ndash; setzt sich aus dem Sendesignal <i>s</i> &#8712; {<i>s</i><sub>0</sub>, <i>s</i><sub>1</sub>} und dem Rauschterm <i>n</i> zusammen. Die Abszisse <i>&rho;</i> bezeichnet eine Realisierung von <i>r</i>.<br>
+
{\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm} | \hspace{0.05cm} m_i ) >  
 +
{\rm Pr}( m_k) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm} | \hspace{0.05cm}m_k )\hspace{0.15cm} \forall k \ne i
 +
\right \} \hspace{0.05cm}.</math>
  
*Die Abszisse ist auf die Bezugsgröße <i>E</i><sup>1/2</sup> normiert, wobei die Normierungsenergie <i>E</i> keine herausgehobene physikalische Bedeutung hat.<br>
+
*Die Form der Entscheidungsregionen&nbsp; $I_i$&nbsp; mit &nbsp;$i = 0$, ... , $M-1$&nbsp; im &nbsp;$N$&ndash;dimensionalen Raum hängen von den bedingten Wahrscheinlichkeitsdichtefunktionen&nbsp; $p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m }$&nbsp; ab, also vom betrachteten Kanal.
 +
*In vielen Fällen &ndash; so auch beim AWGN&ndash;Kanal &ndash; sind die Entscheidungsgrenzen zwischen je zwei Signalpunkten Gerade, was die weiteren Betrachtungen vereinfacht.<br>
  
*Der Rauschterm <i>n</i>  ist gaußverteilt mit dem Mittelwert 0 und der Varianz <i>&sigma;<sub>n</sub></i><sup>2</sup>. Die Wurzel aus der Varianz (<i>&sigma;<sub>n</sub></i>) wird als Effektivwert  oder Streuung bezeichnet.<br>
 
  
*Die Entscheidergrenze <i>G</i> unterteilt den gesamten Wertebereich von <i>r</i> in die beiden Teilbereiche <i>I</i><sub>0</sub> (in dem unter anderem <i>s</i><sub>0</sub> liegt) und <i>I</i><sub>1</sub> (mit dem Signalwert <i>s</i><sub>1</sub>).<br>
+
[[File:P ID2025 Dig T 4 3 S4 version2.png|right|frame|AWGN&ndash;Entscheidungsregionen für <br>$N = 2$, $M = 3$]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 3:}$&nbsp; Die Grafik zeigt die Entscheidungsregionen&nbsp; $I_0$,&nbsp; $I_1$&nbsp; und&nbsp; $I_2$&nbsp; für ein Übertragungssystem mit den Parametern&nbsp; $N = 2$&nbsp; und&nbsp; $M = 3$. Die normierten Sendevektoren sind dabei
 +
::<math>\boldsymbol{ s }_0 = (2,\hspace{0.05cm} 2), \hspace{0.2cm} \hspace{0.01cm}
 +
  \boldsymbol{ s }_1 = (1,\hspace{0.05cm} 3), \hspace{0.01cm} \hspace{0.2cm}
 +
  \boldsymbol{ s }_2 = (1,\hspace{0.05cm} -1)
 +
  \hspace{0.05cm}.</math>
  
*Ist <i>&rho;</i> > <i>G</i>, so liefert der Entscheider den Schätzwert <i>m</i><sub>0</sub>, andernfalls <i>m</i><sub>1</sub>. Hierbei ist vorausgesetzt, dass die Nachricht <i>m<sub>i</sub></i> mit dem Sendesignal <i>s<sub>i</sub></i> eineindeutig zusammenhängt: <i>m<sub>i</sub></i> &nbsp;&#8660;&nbsp; <i>s<sub>i</sub></i>.
+
Es sind nun zwei Fälle zu unterscheiden:
:[[File:P ID2020 Dig T 4 3 S2 version1.png|Bedingte Dichtefunktionen bei gleichwahrscheinlichen Symbolen|class=fit]]<br>
+
*Bei gleichwahrscheinlichen Symbolen &nbsp; &rArr; &nbsp; ${\rm Pr}( m_0) =  {\rm Pr}( m_1) ={\rm Pr}( m_2) = 1/3 $ verlaufen die Grenzen zwischen jeweils zwei Regionen stets geradlinig, mittig und rechtwinklig zu den Verbindungsgeraden.<br>
  
Die Grafik zeigt die bedingten (eindimensionalen) Wahrscheinlichkeitsdichtefunktionen <i>p<sub>r|m<sub>0</sub></sub></i> und  <i>p<sub>r|m<sub>1</sub></sub></i> für den hier betrachteten AWGN&ndash;Kanal, wobei gleiche Symbolwahrscheinlichkeiten vorausgesetzt sind: Pr(<i>m<sub>0</sub></i>) =  Pr(<i>m<sub>1</sub></i>) = 0.5. Dementsprechend ist die (optimale) Entscheidergrenze <i>G</i> = 0.<br>
 
  
Man erkennt aus dieser Darstellung:
+
*Bei ungleichen Symbolwahrscheinlichkeiten sind  dagegen die Entscheidungsgrenzen jeweils in Richtung des unwahrscheinlicheren Symbols (parallel) zu verschieben &ndash; umso weiter, je größer die AWGN&ndash;Streuung&nbsp; $\sigma_n$ ist.}}
*Ist <i>m</i> = <i>m</i><sub>0</sub> und damit <i>s</i> = <i>s</i><sub>0</sub> = 2 &middot; <i>E</i><sup> 1/2</sup>, so kommt es nur dann zu einer Fehlentscheidung, wenn <i>&eta;</i>, die Realisierung der Rauschgröße <i>n</i>, kleiner ist als &ndash;2 &middot; <i>E</i><sup> 1/2</sup>.<br>
 
  
*In diesem Fall ist <i>&rho;</i> < 0, wobei <i>&rho;</i> eine Realisierung des Empfangswertes <i>r</i> bezeichnet.<br><br>
 
  
Die Bildbeschreibung wird auf der nächsten Seite fortgesetzt.<br>
 
  
== Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (2) ==
+
== Fehlerwahrscheinlichkeitsberechnung im nichtbinären Fall ==
 
<br>
 
<br>
[[File:P ID2021 Dig T 4 3 S2 version1.png|Bedingte Dichtefunktionen bei gleichwahrscheinlichen Symbolen|class=fit]]<br>
+
Nachdem die Entscheidungsregionen&nbsp; $I_i$&nbsp; festliegen, kann man die Symbolfehlerwahrscheinlichkeit des Gesamtsystems berechnen. Wir benutzen folgende Bezeichnungen, wobei wir aufgrund der Einschränkungen durch unseren Zeichensatz im Fließtext manchmal andere Namen als in Gleichungen verwenden müssen:
 +
*Symbolfehlerwahrscheinlichkeit: &nbsp; ${\rm Pr}({ \cal E} ) = {\rm Pr(Symbolfehler)} \hspace{0.05cm},$
  
Kommen wir nun zur Berechnung der Fehlerwahrscheinlichkeit:
+
*Wahrscheinlichkeit für eine korrekte Entscheidung: &nbsp; ${\rm Pr}({ \cal C} ) = 1 - {\rm Pr}({ \cal E} ) = {\rm Pr(korrekte \hspace{0.15cm} Entscheidung)} \hspace{0.05cm},$
*Bei AWGN&ndash;Rauschen mit dem Effektivwert (Streuung) <i>&sigma;<sub>n</sub></i> erhält man in diesem Fall, wie bereits in Kapitel 1.2 mit anderer Nomenklatur berechnet wurde:
+
 
 +
*Bedingte Wahrscheinlichkeit einer korrekten Entscheidung unter der Bedingung &nbsp; $m = m_i$: &nbsp; &nbsp; ${\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) \hspace{0.05cm}.$
 +
 
 +
 
 +
Mit diesen Definitionen gilt für die Wahrscheinlichkeit einer korrekten Entscheidung:
 +
 
 +
::<math>{\rm Pr}({ \cal C} ) \hspace{-0.1cm}  =  \hspace{-0.1cm}  \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) =  \sum_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot
 +
\int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho } 
 +
  \hspace{0.05cm}.</math>
 +
 
 +
Für den AWGN&ndash;Kanal gilt dabei entsprechend dem Abschnitt&nbsp; [[Digital_Signal_Transmission/Struktur_des_optimalen_Empfängers#N.E2.80.93dimensionales_Gau.C3.9Fsches_Rauschen| $N$&ndash;dimensionales Gaußsches Rauschen]]:
 +
 
 +
::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) = \frac{1}{(\sqrt{2\pi} \cdot \sigma_n)^N} \cdot 
 +
\int_{I_i} {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_i ||^2 \right ] \,{\rm d} \boldsymbol {\rho }\hspace{0.05cm}.</math>
 +
 
 +
*Dieses Integral muss im allgemeinen Fall numerisch berechnet werden.
 +
*Nur bei einigen wenigen,  einfach beschreibbaren Entscheidungsregionen&nbsp; $\{I_i\}$&nbsp; ist eine analytische Lösung möglich.<br>
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 4:}$&nbsp; Beim AWGN&ndash;Kanal liegt eine 2D&ndash;Gaußglocke um den Sendepunkt&nbsp; $\boldsymbol{ s }_i$, in der linken Grafik erkennbar an den konzentrischen Höhenlinien.
 +
*Etwas willkürlich ist zudem die Entscheidungsgerade&nbsp; $G$&nbsp; eingezeichnet.
 +
*Rechts dargestellt ist in einem anderen Koordinatensystem (verschoben und gedreht) allein die WDF der Rauschkomponente.
  
::<math>{\rm Pr}({ \cal E} | m_0) \hspace{-0.1cm}  =  \hspace{-0.1cm} \int_{-\infty}^{G = 0} p_{r \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \rho } |m_0 ) \,{\rm d} \rho =  \int_{-\infty}^{-  s_0 } p_{{ n} \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \eta } |m_0 ) \,{\rm d} \eta = </math>
 
:::::<math>\hspace{-0.05cm}  =  \hspace{-0.1cm}\int_{-\infty}^{- s_0 } p_{{ n}  } ({ \eta }  ) \,{\rm d} \eta =
 
\int_{ s_0 }^{\infty} p_{{ n}  } ({ \eta }  ) \,{\rm d} \eta = {\rm Q} \left ( {s_0 }/{\sigma_n} \right )
 
\hspace{0.05cm}.</math>
 
  
*Bei der Herleitung der Gleichung wurde berücksichtigt, dass das AWGN&ndash;Rauschen <i>&eta;</i> unabhängig vom Signal (<i>m</i><sub>0</sub> oder <i>m</i><sub>1</sub>) ist und eine symmetrische WDF besitzt. Verwendet wurde zudem das komplementäre Gaußsche Fehlerintegral
+
[[File:P ID2026 Dig T 4 3 S5b version1.png|center|frame|Zur Berechnung der Fehlerwahrscheinlichkeit bei AWGN|class=fit]]
  
::<math>{\rm Q}(x) \frac{1}{\sqrt{2\pi}}  \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u
+
Die Grafik kann wie folgt interpretiert werden:
\hspace{0.05cm}.</math>
+
*Die Wahrscheinlichkeit, dass der Empfangsvektor nicht in das "Sollgebiet"&nbsp; $I_i$&nbsp; fällt, sondern in das rot hinterlegte Gebiet&nbsp; $I_k$, ist&nbsp; $ {\rm Q} (A/\sigma_n)$.
 +
*$A$&nbsp; bezeichnet den Abstand zwischen&nbsp; $\boldsymbol{ s }_i$&nbsp; und&nbsp; $G$.
 +
* $\sigma_n$&nbsp; gibt den Effektivwert (Wurzel aus der Varianz) des AWGN&ndash;Rauschens an und&nbsp; ${\rm Q}(x)$&nbsp; ist die Gaußsche Fehlerfunktion.<br>
  
*Entsprechend gilt für <i>m</i> = <i>m</i><sub>1</sub> &nbsp;&nbsp;&#8660;&nbsp;&nbsp; <i>s</i> = <i>s</i><sub>1</sub> = &ndash;2 &middot; <i>E</i><sup> 1/2</sup>:
+
*Entsprechend ist die Wahrscheinlichkeit für das Ereignis&nbsp; $r \in I_i$&nbsp; gleich dem Komplementärwert
  
::<math>{\rm Pr}({ \cal E} | m_1) =  \int_{0}^{\infty} p_{{ r} \hspace{0.05cm}|\hspace{0.05cm}m_1 } ({ \rho } |m_1 ) \,{\rm d} \rho =  \int_{- s_1 }^{\infty} p_{{ n}  } (\boldsymbol{ \eta } ) \,{\rm d} \eta = {\rm Q} \left ( {- s_1 }/{\sigma_n} \right )
+
::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}\vert\hspace{0.05cm} m_i ) = {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) =
\hspace{0.05cm}.</math>
+
1 - {\rm Q} (A/\sigma_n)\hspace{0.05cm}.</math>}}<br>
  
*Mit dem Abstand <i>d</i> = <i>s</i><sub>1</sub> &ndash; <i>s</i><sub>0</sub> der zwei Signalraumpunkte lassen sich die beiden Ergebnisse zusammenfassen, wobei noch Pr(<i>m</i><sub>0</sub>) + Pr(<i>m</i><sub>1</sub>) = 1 zu berücksichtigen ist:
+
Wir betrachten nun die oben angegebenen Gleichungen
  
::<math>{\rm Pr}({ \cal E} | m_0) =  {\rm Pr}({ \cal E} | m_1) = {\rm Q} \left ( {d}/(2{\sigma_n}) \right )</math>
+
::<math>{\rm Pr}({ \cal C} ) =  \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) \hspace{0.3cm}{\rm mit}  
::<math>\Rightarrow \hspace{0.3cm}{\rm Pr}({ \cal E} ) \hspace{-0.1cm} \hspace{-0.1cm} {\rm Pr}(m_0) \cdot {\rm Pr}({ \cal E} | m_0)  + {\rm Pr}(m_1) \cdot {\rm Pr}({ \cal E} | m_1)=</math>
+
  \hspace{0.3cm} {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) =  
:::::<math> \hspace{0.2cm}\hspace{-0.1cm} = \hspace{-0.1cm} \left [ {\rm Pr}(m_0) + {\rm Pr}(m_1) \right ] \cdot
+
  \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho }  
{\rm Q} \left ( {d}/(2{\sigma_n}) \right ) = {\rm Q} \left ( {d}/(2{\sigma_n}) \right ) \hspace{0.05cm}.</math>
+
  \hspace{0.05cm}</math>
  
Diese Gleichung gilt unter der Voraussetzung <i>G</i> = 0 ganz allgemein, also auch für Pr(<i>m</i><sub>0</sub>) &ne; Pr(<i>m</i><sub>1</sub>). Bei nicht gleichwahrscheinlichen Symbolen lässt sich allerdings die Symbolfehlerwahrscheinlichkeit durch eine andere Entscheidergrenze verkleinern.<br>
+
etwas genauer, wobei wir wieder von zwei Basisfunktionen&nbsp; $(N = 2)$&nbsp; und den drei Signalraumpunkten&nbsp;  $\boldsymbol{ s }_0$,&nbsp; $\boldsymbol{ s }_1$&nbsp; und&nbsp; $\boldsymbol{ s }_2$ $(M = 3)$&nbsp;  ausgehen.
  
<b>Hinweis:</b> Die hier genannte Gleichung gilt auch dann, wenn die Signalraumpunkte keine Skalare sind, sondern durch die Vektoren <b><i>s</i></b><sub>0</sub> und <b><i>s</i></b><sub>1</sub> beschrieben werden. Der  Abstand <i>d</i> ergibt sich dann als die Norm des Differenzvektors:
+
[[File:P ID2028 Dig T 4 3 S5 version1.png|right|frame|Fehlerwahrscheinlichkeitsberechnung beim AWGN-Kanal und &nbsp;$M = 3$]]
 +
*Die Entscheidungsregionen&nbsp; $I_0$,&nbsp; $I_1$&nbsp; und &nbsp;$I_2$&nbsp; sind&nbsp; [[Digital_Signal_Transmission/Approximation_der_Fehlerwahrscheinlichkeit#Optimale_Schwelle_bei_nicht_gleichwahrscheinlichen_Symbolen|bestmöglich]]&nbsp; gewählt.
 +
*Das AWGN&ndash;Rauschen ist in der Skizze durch jeweils drei kreisförmige Höhenlinien angedeutet.
  
:<math>d = || \hspace{0.05cm} \boldsymbol{ s}_1  - \boldsymbol{ s}_0 \hspace{0.05cm} ||
 
\hspace{0.05cm}.</math>
 
  
== Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (3) ==
+
Man erkennt aus dieser Darstellung:
<br>
+
*Unter der Voraussetzung, dass&nbsp; $m = m_i \ \Leftrightarrow \ \boldsymbol{ s } = \boldsymbol{ s }_i$&nbsp; gesendet wurde, wird nur dann eine richtige Entscheidung getroffen, wenn der Empfangswert&nbsp; $\boldsymbol{ r }$&nbsp; in der Region&nbsp; $I_i$&nbsp; liegt.<br>
Betrachten wir nun nochmals die Signalraumkonstellation von der ersten Seite dieses Kapitels mit den Werten  <b><i>s</i></b><sub>0</sub>/<i>E</i><sup> 1/2</sup> = (3.6, 0.8) und <b><i>s</i></b><sub>1</sub>/<i>E</i><sup> 1/2</sup> = (0.4, 3.2). Hier beträgt der Abstand der Signalraumpunkte
 
  
:<math>d = || s_1 - s_0 || = \sqrt{E \cdot (0.4 - 3.6)^2 + E \cdot (3.2 - 0.8)^2} = 4 \cdot \sqrt {E}
+
*Die Wahrscheinlichkeit&nbsp;  ${\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm}m_2)$&nbsp; ist für &nbsp;$i = 2$&nbsp; (weitaus) am größten &nbsp; &#8658; &nbsp; richtige Entscheidung. ${\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm}m_2)$&nbsp; ist deutlich kleiner. Nahezu vernachlässigbar ist&nbsp;  ${\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm}m_2)$.
\hspace{0.05cm},</math>
 
  
also der genau gleiche Wert wie für <b><i>s</i></b><sub>0</sub>/<i>E</i><sup>1/2</sup> = (2, 0) und <b><i>s</i></b><sub>1</sub>/<i>E</i><sup>1/2</sup> = (&ndash;2, 0). Die AWGN&ndash;Rauschvarianz beträgt jeweils <i>&sigma;<sub>n</sub></i><sup>2</sup> = <i>N</i><sub>0</sub>/2.<br>
 
  
[[File:P_ID2023__Dig_T_4_3_S2b_version1.png|Zwei Signalraumkonstellationen|class=fit]]<br>
+
*Die Verfälschungswahrscheinlichkeiten für&nbsp; $m = m_0$&nbsp; bzw.&nbsp; $m = m_1$&nbsp; lauten somit:
  
Die Abbildungen zeigen diese beiden Konstellationen und lassen folgende Gemeinsamkeiten bzw. Unterschiede erkennen:
+
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) +  {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ),</math>
*Wie bereits gesagt, sind sowohl der Abstand der Signalpunkte von der Entscheidungsgeraden (<i>d</i>/2 = 2 &middot; <i>E</i><sup>1/2</sup>) als auch der AWGN&ndash;Kennwert <i>&sigma;<sub>n</sub></i> in beiden Fällen gleich.<br>
+
::<math> {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) ={\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 ) +  {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 )
 +
\hspace{0.05cm}.</math>
  
*Daraus folgt: Die beiden Anordnungen führen zur gleichen Fehlerwahrscheinlichkeit, wenn man den Parameter <i>E</i> (eine Art Normierungsenergie) konstant lässt:
+
*Die größte Verfälschungswahrscheinlichkeit ergibt sich für&nbsp; $m = m_0$. Wegen
  
::<math>{\rm Pr} ({\rm Symbolfehler}) = {\rm Pr}({ \cal E} ) {\rm Q} \left ( {d}/(2{\sigma_n}) \right )\hspace{0.05cm}.</math>
+
::<math>{\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \approx {\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 )
 +
\hspace{0.05cm}, </math>
 +
::<math>{\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \gg {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 )
 +
\hspace{0.05cm}</math>
  
*Bei gegebener <i>mittlerer Energie pro Symbol</i> (<i>E<sub>s</sub></i>) ist jedoch die linke Konstellation (<i>E<sub>s</sub></i> = 4 &middot; <i>E</i>) der rechten (<i>E<sub>s</sub></i> = 24 &middot; <i>E</i>) deutlich überlegen: Die gleiche Fehlerwahrscheinlichkeit ergibt sich mit weniger Energie.<br><br>
+
:gelten folgende Relationen: &nbsp; ${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) > {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) >{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\hspace{0.05cm}. $
  
Auf diesen Sachverhalt wird in der Aufgabe Z4.6 noch im Detail eingegangen. Die Kreise in obiger Grafik veranschaulichen die zirkuläre Symmetrie von 2D&ndash;AWGN&ndash;Rauschen.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp; Diese Ergebnisse können wie folgt zusammengefasst werden:
 +
*Zur Berechnung der (mittleren) Fehlerwahrscheinlichkeit muss auch bei gleichwahrscheinlichen Symbolen allgemein über alle&nbsp; $M$&nbsp; Terme gemittelt werden.
 +
*Im Fall gleichwahrscheinlicher Symbole kann&nbsp; ${\rm Pr}(m_i) = 1/M$&nbsp; vor die Summation gezogen werden, was allerdings den Rechengang nicht sonderlich vereinfacht.
 +
*Nur bei symmetrischer Anordnung kann auf die Mittelung verzichtet werden.<br>}}
  
== Nicht gleichwahrscheinliche Binärsymbole – Schwellenoptimierung (1) ==
+
== Union Bound - Obere Schranke für die Fehlerwahrscheinlichkeit==
 
<br>
 
<br>
Gilt Pr(<i>m</i><sub>0</sub>) &ne; Pr(<i>m</i><sub>1</sub>), so kann man durch eine Verschiebung der Entscheidungsgrenze <i>G</i> eine etwas kleinere Fehlerwahrscheinlichkeit erreichen. Die nachfolgenden Ergebnisse werden ausführlich in der Musterlösung zur Aufgabe A4.7 hergeleitet:
+
Bei beliebigen Werten von&nbsp; $M$&nbsp; gilt für die Verfälschungswahrscheinlichkeit unter der Voraussetzung, dass die Nachricht&nbsp; $m_i$&nbsp; $($bzw. das Signal &nbsp;$\boldsymbol{s}_i)$&nbsp; gesendet wurde:
*Bei ungleichen Symbolwahrscheinlichkeiten liegt die optimale Entscheidungsgrenze <i>G</i><sub>opt</sub> zwischen den Regionen <i>I</i><sub>0</sub> und <i>I</i><sub>1</sub> näher beim unwahrscheinlicheren Symbol.<br>
+
 
 +
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = {\rm Pr} \left [ \bigcup_{k \ne i} { \cal E}_{ik}\right ] 
 +
\hspace{0.05cm},\hspace{0.5cm}{ \cal E}_{ik}\hspace{-0.1cm}: \boldsymbol{ r }{\rm \hspace{0.15cm}liegt \hspace{0.15cm}n\ddot{a}her \hspace{0.15cm}bei \hspace{0.15cm}}\boldsymbol{ s }_k {\rm \hspace{0.15cm}als \hspace{0.15cm}beim \hspace{0.15cm}Sollwert \hspace{0.15cm}}\boldsymbol{ s }_i
 +
\hspace{0.05cm}. </math>
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Für diesen Ausdruck lässt sich mit einer Booleschen Ungleichung &ndash; der so genannten &nbsp;'''Union Bound''' &ndash; eine obere Schranke angeben:
 +
 
 +
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_i ) \le \sum\limits_{k = 0, \hspace{0.1cm}k \ne i}^{M-1}
 +
{\rm Pr}({ \cal E}_{ik}) =  \sum\limits_{k = 0, \hspace{0.1cm}k \ne i}^{M-1}{\rm Q} \big [ d_{ik}/(2{\sigma_n}) \big ]\hspace{0.05cm}. </math>
  
*Die normierte optimale Verschiebung gegenüber der Grenze <i>G</i> = 0 bei gleichwahrscheinlichen Symbolen beträgt
+
''Anmerkungen'':
 +
*$d_{ik} = \vert \hspace{-0.05cm} \vert \boldsymbol{s}_i - \boldsymbol{s}_k \vert \hspace{-0.05cm} \vert$&nbsp; ist der Abstand der Signalraumpunkte $\boldsymbol{s}_i$ und $\boldsymbol{s}_k$.
 +
*$\sigma_n$&nbsp; gibt den Effektivwert des AWGN&ndash;Rauschens an.<br>
 +
*Die Union Bound ist nur bei gleichwahrscheinlichen Symbolen &nbsp; &rArr; &nbsp; ${\rm Pr}(m_i) = 1/M$&nbsp; anwendbar.
 +
*Auch dann muss zur Berechnung der (mittleren) Fehlerwahrscheinlichkeit über alle&nbsp; $m_i$&nbsp; gemittelt werden.}}
  
::<math>\gamma_{\rm opt} = \frac{G_{\rm opt}}{s_0 } = 2 \cdot  \frac{  \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} \hspace{0.05cm}.</math>
 
  
*Die Fehlerwahrscheinlichkeit ist dann gleich
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 5:}$&nbsp; Die Grafik verdeutlicht die &nbsp;<b>Union Bound</b>&nbsp; am Beispiel &nbsp;$M = 3$&nbsp; mit gleichwahrscheinlichen Symbolen: &nbsp; ${\rm Pr}(m_0) = {\rm Pr}(m_1) =  {\rm Pr}(m_2) =1/3$.<br>
  
::<math>{\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Q} \left[  {d}/(2{\sigma_n}) \cdot (1 - \gamma_{\rm opt}) \right ]
+
[[File:P ID2041 Dig T 4 3 S6 version1.png|center|frame|Zur Verdeutlichung der „Union Bound”|class=fit]]
+ {\rm Pr}(m_1) \cdot {\rm Q} \left [ {d}/(2{\sigma_n}) \cdot (1 + \gamma_{\rm opt}) \right ]\hspace{0.05cm}.</math>
+
Zu diesen Darstellungen ist anzumerken:
 +
*Für die Symbolfehlerwahrscheinlichkeit gilt:
 +
::<math>{\rm Pr}({ \cal E} ) = 1 - {\rm Pr}({ \cal C} ) \hspace{0.05cm},\hspace{0.2cm}{\rm Pr}({ \cal C} ) = {1}/{3} \cdot
 +
  \big [ {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_0 ) + {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_1 ) + {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_2 ) \big ]\hspace{0.05cm}.</math>
  
{{Beispiel}}''':''' Für das Folgende gelte
+
*Der erste Term&nbsp; ${\rm Pr}(\boldsymbol{r} \in I_0\hspace{0.05cm}\vert \hspace{0.05cm} m_0)$&nbsp; im Klammerausdruck unter der Voraussetzung&nbsp; $m = m_0 \  \Leftrightarrow  \ \boldsymbol{s} =  \boldsymbol{s}_0$&nbsp; ist in der linken Grafik durch die rote Region&nbsp; $I_0$&nbsp; visualisiert.
  
:<math>\boldsymbol{ s }_0 = (2 \cdot \sqrt{E}\hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E}\hspace{0.1cm} 0), \hspace{0.2cm}
+
*Die Komplementärregion&nbsp; ${\rm Pr}(\boldsymbol{r} \not\in I_0\hspace{0.05cm}\vert \hspace{0.05cm} m_0)$&nbsp; ist links entweder blau oder grün oder blau&ndash;grün schraffiert markiert. Es gilt&nbsp; ${\rm Pr}({ \cal C}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) = 1 - {\rm Pr}({ \cal E}\hspace{0.05cm}\vert \hspace{0.05cm} m_0 )$&nbsp; mit
  \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E}\hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.</math>
+
:$${\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 )  =
 +
  {\rm Pr}(\boldsymbol{ r } \in I_1  \hspace{0.05cm}\cup \hspace{0.05cm} \boldsymbol{ r } \in I_2 \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) \le {\rm Pr}(\boldsymbol{ r } \in I_1  \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) +
 +
  {\rm Pr}(\boldsymbol{ r } \in I_2  \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) ={\rm Q} \big [ d_{01}/(2{\sigma_n}) \big ]+
 +
  {\rm Q} \big [ d_{02}/(2{\sigma_n}) \big ]
 +
  \hspace{0.05cm}.$$
  
Bei gleichwahrscheinlichen Symbolen ergibt sich die optimale Entscheidergrenze zu <i>G</i><sub>opt</sub> = 0. Damit erhält man für die Fehlerwahrscheinlichkeit:
+
*Das "$\le$"&ndash;Zeichen berücksichtigt hier, dass die blau&ndash;grün schraffierte Fläche sowohl zum Gebiet &nbsp;"$\boldsymbol{r} \in I_1$"&nbsp; als auch zum Gebiet &nbsp;"$\boldsymbol{r} \in I_2$"&nbsp; gehört, so dass die Summe einen zu großen Wert liefert. Das heißt: &nbsp; Die Union Bound liefert stets eine obere Schranke.<br>
  
:<math>{\rm Pr}({ \cal E} ) =   {\rm Q} \left ( {d}/(2{\sigma_n}) \right ) = {\rm Q} (2) \approx 2.26\% \hspace{0.05cm}.</math>
+
*Die mittlere Grafik verdeutlicht die Berechnung der Union Bound unter der Voraussetzung, dass&nbsp; $m = m_1 \  \Leftrightarrow  \ \boldsymbol{s} =  \boldsymbol{s}_1$&nbsp; gesendet wurde.
 +
*Dem rechten Bild liegt&nbsp; $m = m_2 \  \Leftrightarrow  \ \boldsymbol{s} \boldsymbol{s}_2$&nbsp; zugrunde.}}<br>
  
[[File:P ID2024 Dig T 4 3 S3 version2.png|Dichtefunktionen für gleiche/ungleiche Symbolwahrscheinlichkeiten|class=fit]]<br>
 
  
Die Beschreibung der unteren Grafik folgt auf der nächsten Seite.{{end}}<br>
 
  
== Nicht gleichwahrscheinliche Binärsymbole – Schwellenoptimierung (2) ==
+
== Weitere Aufwandsreduzierung bei der Union Bound==
 
<br>
 
<br>
 +
[[File:P ID2032 Dig T 4 3 S6b version1.png|right|frame|Zur Definition der Nachbarmengen &nbsp;$N(i)$]]
 +
Die Abschätzung nach der "Union Bound" lässt sich weiter verbessern, indem man nur solche Signalraumpunkte berücksichtigt, die direkte Nachbarn des aktuellen Sendevektors&nbsp; $\boldsymbol{s}_i$&nbsp; sind:
  
{{Beispiel}}''':''' Wir betrachten nun ungleiche Symbolwahrscheinlichkeiten, wie für das untere Bild vorausgesetzt:
+
::<math>{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) =  \sum\limits_{k = 0,  \hspace{0.1cm} k \ne i}^{M-1}{\rm Q}\big [ d_{ik}/(2{\sigma_n}) \big ]
 +
\hspace{0.2cm} \Rightarrow \hspace{0.2cm} {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) =  \sum\limits_{k = 0, \hspace{0.1cm} k \hspace{0.05cm}\in \hspace{0.05cm}N(i)}^{M-1}\hspace{-0.4cm}{\rm Q} \big [ d_{ik}/(2{\sigma_n}) \big ]
 +
\hspace{0.05cm}. </math>
  
:<math>{\rm Pr}( m_0) = 3/4\hspace{0.05cm},\hspace{0.3cm}{\rm Pr}( m_1) = 1/4\hspace{0.05cm}.</math>
+
Dazu definieren wir die Nachbarn von&nbsp; $\boldsymbol{s}_i$ als
  
[[File:P ID2024 Dig T 4 3 S3 version2 (1).png|Dichtefunktionen für gleiche/ungleiche Symbolwahrscheinlichkeiten|class=fit]]<br>
+
::<math>N(i) = \left \{ k \in \left \{ i = 0, 1, 2, \hspace{0.05cm}\text{...} \hspace{0.05cm}, M-1   \right \}\hspace{0.05cm}|\hspace{0.05cm} I_i  {\rm \hspace{0.15cm}grenzt \hspace{0.15cm}direkt \hspace{0.15cm}an \hspace{0.15cm}}I_k \right \}
 +
\hspace{0.05cm}. </math>
 +
Die Grafik verdeutlicht diese Definiton am Beispiel&nbsp; $M = 5$. Die Regionen&nbsp; $I_0$&nbsp; und&nbsp; $I_3$&nbsp; haben jeweils nur zwei direkte Nachbarn, während&nbsp; $I_4$&nbsp; an alle anderen Entscheidungsregionen angrenzt.
  
Die weiteren Systemgrößen seien gegenüber der oberen Grafik unverändert:
+
Durch die Einführung der Nachbarmengen&nbsp; $N(i)$&nbsp; wird die Qualität der Union Bound&ndash;Approximation verbessert, das heißt, die Schranke liegt dann näher an der tatsächlichen Fehlerwahrscheinlichkeit, wird also nach unten verschoben.
 +
<br clear=all>
 +
Eine weitere und häufig verwendete Schranke benutzt nur den minimalen Abstand&nbsp; $d_{\rm min}$&nbsp; zwischen zwei Signalraumpunkten. Im obigen Beispiel tritt dieser zwischen&nbsp; $\boldsymbol{s}_1$&nbsp; und&nbsp; $\boldsymbol{s}_2$&nbsp; auf. Für gleichwahrscheinliche Symbole &nbsp; &#8658; &nbsp; ${\rm Pr}(m_i) =1/M$&nbsp; gilt dann die folgende Abschätzung:
  
:<math>\boldsymbol{ s }_0 = (2 \cdot \sqrt{E}, \hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E}\hspace{0.1cm} 0), \hspace{0.2cm}
+
::<math>{\rm Pr}({ \cal E} ) \le    \sum\limits_{i = 0 }^{M-1} \left [ {\rm Pr}(m_i) \cdot \sum\limits_{k \ne i }{\rm Q} \big [d_{ik}/(2{\sigma_n})\big ] \right ]
  \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E}, \hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.</math>
+
\le  \frac{1}{M} \cdot \sum\limits_{i = 0 }^{M-1} \left [  \sum\limits_{k \ne i } {\rm Q} [d_{\rm min}/(2{\sigma_n})]  \right ] = \sum\limits_{k \ne i }{\rm Q} \big [d_{\rm min}/(2{\sigma_n})\big ] = (M-1) \cdot
 +
{\rm Q} \big  [d_{\rm min}/(2{\sigma_n})\big  ]
 +
\hspace{0.05cm}. </math>
  
In diesem Fall beträgt der optimale (normierte) Verschiebungsfaktor
+
Hierzu ist anzumerken:
 +
*Diese Schranke ist auch für große&nbsp; $M$&ndash;Werte sehr einfach zu berechnen. Bei vielen Anwendungen ergibt sich jedoch damit  für die Fehlerwahrscheinlichkeit ein viel zu großer Wert.<br>
  
:<math>\gamma =  2 \cdot \frac{  \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} = 2 \cdot
+
*Die Schranke ist nur dann gleich der tatsächlichen Fehlerwahrscheinlichkeit, wenn alle Regionen an alle anderen direkt angrenzen und die Distanzen aller&nbsp; $M$&nbsp; Signalpunkte zueinander gleich&nbsp; $d_{\rm min}$&nbsp; sind.<br>
\frac{ E}{16 \cdot E} \cdot {\rm ln} \hspace{0.15cm} \frac{1/4}{3/4 } \approx - 0.14
+
 
\hspace{0.05cm},</math>
+
*Im Sonderfall&nbsp; $M = 2$&nbsp; sind diese beiden Voraussetzungen häufig erfüllt, so dass die Schranke exakt mit der tatsächlichen Fehlerwahrscheinlichkeit übereinstimmt.<br>
 +
 
 +
== Aufgaben zum Kapitel==
 +
<br>
 +
[[Aufgaben:4.06_Optimale_Entscheidungsgrenzen|Aufgabe 4.6: Optimale Entscheidungsgrenze]]
 +
 
 +
[[Aufgaben:4.06Z_Signalraumkonstellationen|Aufgabe 4.6Z: Signalraumkonstellationen]]
  
was einer Verschiebung um 14% hin zum unwahrscheinlicheren Symbol <b><i>s</i></b><sub>1</sub> (also nach links) bedeutet. Dadurch wird die Fehlerwahrscheinlichkeit geringfügig kleiner als bei gleichwahrscheinlichen Symbolen:
+
[[Aufgaben:Aufgabe_4.07:_Nochmals_Entscheidungsgrenzen|Aufgabe 4.7: Nochmals Entscheidungsgrenzen]]
  
:<math>{\rm Pr}({ \cal E} ) \hspace{-0.1cm}  =  \hspace{-0.1cm}  0.75 \cdot {\rm Q} \left ( 2 \cdot 1.14 \right ) + 0.25 \cdot {\rm Q} \left ( 2 \cdot 0.86 \right ) = </math>
+
[[Aufgaben:4.08_Entscheidungsregionen_bei_drei_Symbolen|Aufgabe 4.8: Entscheidungsregionen bei drei Symbolen]]
:::<math> \hspace{-0.2cm}  =  \hspace{-0.1cm}0.75 \cdot 0.0113 + 0.25 \cdot 0.0427 \approx 1.92\% \hspace{0.05cm}.</math>
 
  
Man erkennt aus diesen Zahlenwerten: Durch die Schwellenverschiebung wird nun zwar das Symbol <b><i>s</i></b><sub>1</sub> stärker verfälscht, das wahrscheinlichere Symbol <b><i>s</i></b><sub>0</sub> jedoch überproportional weniger.<br>
+
[[Aufgaben:4.08Z_Fehlerwahrscheinlichkeit_bei_drei_Symbolen|Aufgabe 4.8Z: Fehlerwahrscheinlichkeit bei drei Symbolen]]
  
Das Ergebnis sollte nicht zu Fehlinterpretationen führen. Im unsymmetrischen Fall &nbsp;&#8658;&nbsp; Pr(<i>m</i><sub>0</sub>) &ne; Pr(<i>m</i><sub>1</sub>) ergibt sich zwar eine kleinere Fehlerwahrscheinlichkeit  als für Pr(<i>m</i><sub>0</sub>) = Pr(<i>m</i><sub>1</sub>) = 0.5, aber mit jedem Symbol kann auch nur weniger Information übertragen werden, bei den gewählten Zahlenwerten 0.81 bit/Symbol statt 1 bit/Symbol. Aus informationstheoretischer Sicht ist Pr(<i>m</i><sub>0</sub>) = Pr(<i>m</i><sub>1</sub>) optimal.<br>
+
[[Aufgaben:Aufgabe_4.09:_Entscheidungsregionen_bei_Laplace|Aufgabe 4.9: Entscheidungsregionen bei Laplace]]
  
<i>Anmerkung: </i>Bei Pr(<i>m</i><sub>0</sub>) &ne; Pr(<i>m</i><sub>1</sub>)  müssen nun die absoluten Wahrscheinlichkeitsdichefunktionen Pr(<i>m<sub>i</sub></i>) &middot; <i>p<sub>r|m<sub>i</sub></sub></i>(<i>&rho;</i>&nbsp;|&nbsp;<i>m<sub>i</sub></i>) betrachtet werden. Der formale Parameter <i>&rho;</i> gibt dabei wieder eine Realisierung der AWGN&ndash;Zufallsgröße <i>r</i> = <i>s</i> + <i>n</i> an. Im Folgenden wird dieser Sachverhalt berücksichtigt.<br>
+
[[Aufgaben:Aufgabe_4.09Z:_Laplace-verteiltes_Rauschen|Aufgabe 4.9Z: Laplace-verteiltes Rauschen]]
  
{{end}}<br>
+
[[Aufgaben:4.10_Union_Bound|Aufgabe 4.10: Union Bound]]
  
  
 
{{Display}}
 
{{Display}}

Revision as of 15:24, 28 May 2021

Optimale Entscheidung bei binärer Übertragung


Wir gehen hier von einem Übertragungssystem aus, das wie folgt charakterisiert werden kann:   $\boldsymbol{r} = \boldsymbol{s} + \boldsymbol{n}$. Dieses System weist folgende Eigenschaften auf:

  • Der das Übertragungssystem vollständig beschreibende Vektorraum wird von  $N = 2$  zueinander orthogonalen Basisfunktionen  $\varphi_1(t)$  und  $\varphi_2(t)$  aufgespannt.
  • Demzufolge ist auch die Wahrscheinlichkeitsdichtefunktion des additiven und weißen Gaußschen Rauschens zweidimensional anzusetzen, gekennzeichnet durch den Vektor  $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.
  • Es gibt nur zwei mögliche Sendesignale  $(M = 2)$, die durch die beiden Vektoren  $\boldsymbol{ s_0} = (s_{01},\hspace{0.05cm}s_{02})$  und  $\boldsymbol{ s_1} = (s_{11},\hspace{0.05cm}s_{12})$  beschrieben werden:
$$s_0(t)= s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},\hspace{1cm}s_1(t) = s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.$$
  • Die beiden Nachrichten  $m_0 \ \Leftrightarrow \ \boldsymbol{ s_0}$  und  $m_1 \ \Leftrightarrow \ \boldsymbol{ s_1}$  sind nicht notwendigermaßen gleichwahrscheinlich.
  • Aufgabe des Entscheiders ist es, einen Schätzwert für den aktuellen Empfangsvektor  $\boldsymbol{r}$  nach der  MAP–Entscheidungsregel  anzugeben. Diese lautet im vorliegenden Fall:
$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} \big[ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm}|\hspace{0.05cm} m_i )\big ] \hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}\hspace{0.3cm}{\rm mit}\hspace{0.3cm} \boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \hspace{0.05cm}\rho_2) \hspace{0.05cm}.$$

Im hier betrachteten Sonderfall  $N = 2$  und  $M = 2$  partitioniert der Entscheider den zweidimensionalen Raum in die zwei disjunkten Gebiete  $I_0$  (rot hinterlegt) und  $I_1$  (blau), wie die folgende Grafik verdeutlicht. Liegt der Empfangswert in  $I_0$, so wird als Schätzwert  $m_0$  ausgegeben, andernfalls  $m_1$.

Entscheidungsregionen für gleiche (links) bzw. ungleiche (rechts) Auftrittswahrscheinlichkeiten

$\text{Herleitung und Bildbeschreibung:}$  Beim AWGN–Kanal und  $M = 2$  lautet somit die Entscheidungsregel:

Man entscheide sich immer dann für die Nachricht  $m_0$, falls folgende Bedingung erfüllt ist:

$${\rm Pr}( m_0) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot \vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 \right ] > {\rm Pr}( m_1) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2 \right ] \hspace{0.05cm}.$$

Die Grenzlinie zwischen den beiden Entscheidungsregionen  $I_0$  und  $I_1$  erhält man, wenn man in obiger Gleichung das Größerzeichen durch das Gleichheitszeichen ersetzt und die Gleichung etwas umformt:

$$\vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}\big [{\rm Pr}( m_0)\big ] = \vert \hspace{-0.05cm} \vert \boldsymbol{ \rho } - \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}\big [{\rm Pr}( m_1)\big ]$$
$$\Rightarrow \hspace{0.3cm} \vert \hspace{-0.05cm} \vert \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert^2 - \vert \hspace{-0.05cm} \vert \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert^2 + 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{ {\rm Pr}( m_0)}{ {\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$

Aus dieser Darstellung erkennt man:

  • Die Grenzkurve zwischen den Regionen  $I_0$  und  $I_1$  ist eine Gerade, da die Bestimmungsgleichung linear im Empfangsvektor  $\boldsymbol{ \rho } = (\rho_1, \hspace{0.05cm}\rho_2)$  ist.
  • Bei gleichwahrscheinlichen Symbolen verläuft die Grenze genau in der Mitte zwischen  $\boldsymbol{ s }_0$  und  $\boldsymbol{ s }_1$  und um  $90^\circ$  verdreht gegenüber der Verbindungslinie zwischen den Sendepunkten (linke Grafik):
$$\vert \hspace{-0.05cm} \vert \boldsymbol{ s }_1 \vert \hspace{-0.05cm} \vert ^2 - \vert \hspace{-0.05cm} \vert \boldsymbol{ s }_0 \vert \hspace{-0.05cm} \vert ^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  • Für  ${\rm Pr}(m_0) > {\rm Pr}(m_1)$  ist die Entscheidungsgrenze in Richtung des unwahrscheinlicheren Symbols  $\boldsymbol{ s }_1$  verschoben, und zwar um so mehr, je größer die AWGN–Streuung  $\sigma_n$  ist.
  • Die grün–durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen  $I_0$  (rot) und  $I_1$  (blau) gelten für die (normierte) Streuung  $\sigma_n = 1$  und die gestrichelten Grenzlinien für  $\sigma_n = 0$  bzw.  $\sigma_n = 2$.

Der Sonderfall gleichwahrscheinlicher Binärsymbolen


Wir gehen weiterhin von einem Binärsystem aus  $(M = 2)$, betrachten aber nun den einfachen Fall, dass dieses durch eine einzige Basisfunktion beschrieben werden kann  $(N = 1)$. Die Fehlerwahrscheinlichkeit hierfür wurde bereits im Abschnitt  Definition der Bitfehlerwahrscheinlichkeit  berechnet.

Mit der für das vierte Hauptkapitel gewählten Nomenklatur und Darstellungsform ergibt sich folgende Konstellation:

  • Der Empfangswert  $r = s + n$  ist nunmehr ein Skalar und setzt sich aus dem Sendesignal  $s \in \{s_0, \hspace{0.05cm}s_1\}$  und dem Rauschterm  $n$  additiv zusammen. Die Abszisse  $\rho$  bezeichnet eine Realisierung von  $r$.
  • Die Abszisse ist zudem auf die Bezugsgröße  $\sqrt{E}$  normiert, wobei hier die Normierungsenergie  $E$  keine herausgehobene, physikalisch interpretierbare Bedeutung hat.
  • Der Rauschterm  $n$  ist gaußverteilt mit Mittelwert  $m_n = 0$  und Varianz  $\sigma_n^2$. Die Wurzel aus der Varianz  $(\sigma_n)$  wird als der Effektivwert oder die Streuung bezeichnet.
  • Die Entscheidergrenze  $G$  unterteilt den gesamten Wertebereich von  $r$  in die zwei Teilbereiche  $I_0$  $($in dem unter anderem  $s_0$  liegt$)$ und  $I_1$  $($mit dem Signalwert  $s_1)$.
  • Ist  $\rho > G$, so liefert der Entscheider den Schätzwert  $m_0$, andernfalls  $m_1$. Hierbei ist vorausgesetzt, dass die Nachricht  $m_i$  mit dem Sendesignal  $s_i$  eineindeutig zusammenhängt:   $m_i \Leftrightarrow s_i$.
Bedingte Dichtefunktionen bei gleichwahrscheinlichen Symbolen

Die Grafik zeigt die bedingten (eindimensionalen) Wahrscheinlichkeitsdichtefunktionen  $p_{\hspace{0.02cm}r\hspace{0.05cm} \vert \hspace{0.05cm}m_0}$  und  $p_{\hspace{0.02cm}r\hspace{0.05cm} \vert \hspace{0.05cm}m_1}$  für den AWGN–Kanal, wobei gleiche Symbolwahrscheinlichkeiten vorausgesetzt sind:   ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$. Die (optimale) Entscheidergrenze ist somit  $G = 0$. Man erkennt aus dieser Darstellung:

  • Ist  $m = m_0$  und damit  $s = s_0 = 2 \cdot E^{1/2}$, so kommt es nur dann zu einer Fehlentscheidung, wenn  $\eta$, die Realisierung der Rauschgröße  $n$, kleiner ist als  $-2 \cdot E^{1/2}$. In diesem Fall ist  $\rho < 0$, wobei  $\rho$  eine Realisierung des Empfangswertes  $r$  bezeichnet.
  • Bei  $m = m_1$   ⇒   $s = s_1 = -2 \cdot E^{1/2}$  kommt es dagegen immer dann zu einer Fehlentscheidung, wenn  $\eta$  größer ist als  $+2 \cdot E^{1/2}$. In diesem Fall ist  $\rho > 0$.


Fehlerwahrscheinlichkeit bei gleichwahrscheinlichen Symbolen


Es gelte  ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$. Bei AWGN–Rauschen mit Effektivwert (Streuung)  $\sigma_n$  erhält man, wie bereits im Abschnitt  Definition der Bitfehlerwahrscheinlichkeit  mit anderer Nomenklatur berechnet wurde, für die Wahrschenlichkeit einer Fehlentscheidung  $(\cal E)$  unter der Bedingung, dass die Nachricht  $m_0$  gesendet wurde:

$${\rm Pr}({ \cal E}\hspace{0.05cm} \vert \hspace{0.05cm} m_0) = \int_{-\infty}^{G = 0} p_{r \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \rho } \hspace{0.05cm} \vert \hspace{0.05cm}m_0 ) \,{\rm d} \rho = \int_{-\infty}^{- s_0 } p_{{ n} \hspace{0.05cm}\vert\hspace{0.05cm}m_0 } ({ \eta } \hspace{0.05cm}|\hspace{0.05cm}m_0 ) \,{\rm d} \eta = \int_{-\infty}^{- s_0 } p_{{ n} } ({ \eta } ) \,{\rm d} \eta = \int_{ s_0 }^{\infty} p_{{ n} } ({ \eta } ) \,{\rm d} \eta = {\rm Q} \left ( {s_0 }/{\sigma_n} \right ) \hspace{0.05cm}.$$

Bei der Herleitung der Gleichung wurde berücksichtigt, dass das AWGN–Rauschen  $\eta$  unabhängig vom Signal  $(m_0$  oder  $m_1)$  ist und eine symmetrische WDF besitzt. Verwendet wurde zudem das komplementäre Gaußsche Fehlerintegral

$${\rm Q}(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \hspace{0.05cm}.$$

Entsprechend gilt für  $m = m_1$   ⇒   $s = s_1 = -2 \cdot E^{1/2}$:

$${\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1) = \int_{0}^{\infty} p_{{ r} \hspace{0.05cm}\vert\hspace{0.05cm}m_1 } ({ \rho } \hspace{0.05cm}\vert\hspace{0.05cm}m_1 ) \,{\rm d} \rho = \int_{- s_1 }^{\infty} p_{{ n} } (\boldsymbol{ \eta } ) \,{\rm d} \eta = {\rm Q} \left ( {- s_1 }/{\sigma_n} \right ) \hspace{0.05cm}.$$

$\text{Fazit:}$  Mit dem Abstand  $d = s_1 - s_0$  der Signalraumpunkte kann man die Ergebnisse zusammenfassen, wobei noch  ${\rm Pr}(m_0) + {\rm Pr}(m_1) = 1$  zu berücksichtigen ist:

$${\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0) = {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1) = {\rm Q} \big ( {d}/(2{\sigma_n}) \big )$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_0) + {\rm Pr}(m_1) \cdot {\rm Pr}({ \cal E} \hspace{0.05cm}\vert\hspace{0.05cm} m_1)= \big [ {\rm Pr}(m_0) + {\rm Pr}(m_1) \big ] \cdot {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] = {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] \hspace{0.05cm}.$$

Hinweise:

  • Diese Gleichung gilt unter der Voraussetzung  $G = 0$  ganz allgemein, also auch für  ${\rm Pr}(m_0) \ne {\rm Pr}(m_1)$.
  • Bei  nicht gleichwahrscheinlichen Symbolen  lässt sich allerdings die Fehlerwahrscheinlichkeit durch eine andere Entscheidergrenze verkleinern.
  • Die hier genannte Gleichung gilt auch dann, wenn die Signalraumpunkte keine Skalare sind, sondern durch die Vektoren  $\boldsymbol{ s}_0$  und  $\boldsymbol{ s}_1$  beschrieben werden.
  • Der Abstand  $d$  ergibt sich dann als die Norm des Differenzvektors:   $d = \vert \hspace{-0.05cm} \vert \hspace{0.05cm} \boldsymbol{ s}_1 - \boldsymbol{ s}_0 \hspace{0.05cm} \vert \hspace{-0.05cm} \vert \hspace{0.05cm}.$


$\text{Beispiel 1:}$  Betrachten wir nochmals die Signalraumkonstellation von der  ersten Kapitelseite  (untere Grafik) mit den Werten

Zwei Signalraumkonstellationen
  • $\boldsymbol{ s}_0/E^{1/2} = (3.6, \hspace{0.05cm}0.8)$ und
  • $\boldsymbol{ s}_1/E^{1/2} = (0.4, \hspace{0.05cm}3.2)$.


Hier beträgt der Abstand der Signalraumpunkte

$$d = \vert \hspace{-0.05cm} \vert s_1 - s_0 \vert \hspace{-0.05cm} \vert = \sqrt{E \cdot (0.4 - 3.6)^2 + E \cdot (3.2 - 0.8)^2} = 4 \cdot \sqrt {E}\hspace{0.05cm}.$$

Es ergibt sich also der genau gleiche Wert wie für die obere Konstellation mit

  • $\boldsymbol{ s}_0/E^{1/2} = (2, \hspace{0.05cm}0)$ und
  • $\boldsymbol{ s}_1/E^{1/2} = (-2, \hspace{0.05cm}0)$.


Die Abbildungen zeigen diese beiden Konstellationen und lassen folgende Gemeinsamkeiten bzw. Unterschiede erkennen, wobei jeweils von der AWGN–Rauschvarianz  $\sigma_n^2 = N_0/2$  ausgegangen wird. Die Kreise in der Grafik veranschaulichen die zirkuläre Symmetrie von 2D–AWGN–Rauschen.

  • Wie bereits gesagt, sind sowohl der Abstand der Signalpunkte von der Entscheidungsgeraden  $(d/2 = 2 \cdot \sqrt {E})$  als auch der AWGN–Kennwert  $\sigma_n$  in beiden Fällen gleich.
  • Daraus folgt:   Die beiden Anordnungen führen zur gleichen Fehlerwahrscheinlichkeit, wenn man den Parameter  $E$  (eine Art Normierungsenergie) konstant lässt:
$${\rm Pr} ({\rm Symbolfehler}) = {\rm Pr}({ \cal E} ) = {\rm Q} \big [ {d}/(2{\sigma_n}) \big ]\hspace{0.05cm}.$$
  • Die mittlere Energie pro Symbol  $(E_{\rm S})$  ergibt sich für die obere Konstellation zu
$$E_{\rm S} = 1/2 \cdot \vert \hspace{-0.05cm} \vert s_0 \vert \hspace{-0.05cm} \vert^2 + 1/2 \cdot \vert \hspace{-0.05cm} \vert s_1 \vert \hspace{-0.05cm} \vert^2 = E/2 \cdot \big[(+2)^2 + (-2)^2\big] = 4 \cdot {E}\hspace{0.05cm}.$$
  • Bei der unteren Konstellation erhält man in gleicher Weise:
$$E_{\rm S} = \ \text{...} \ = E/2 \cdot \big[(3.6)^2 + (0.8)^2\big] + E/2 \cdot \big[(0.4)^2 + (3.2)^2 \big] = 12 \cdot {E}\hspace{0.05cm}.$$
  • Bei gegebener mittlerer Energie pro Symbol  $(E_{\rm S})$  ist demnach die obere Konstellation der unteren deutlich überlegen:   Die gleiche Fehlerwahrscheinlichkeit ergibt sich mit einem Drittel der aufzuwendenden Energie pro Symbol. Auf diesen Sachverhalt wird in der  Aufgabe 4.6Z  noch im Detail eingegangen.


Optimale Schwelle bei nicht gleichwahrscheinlichen Symbolen


Gilt  ${\rm Pr}(m_0) \ne {\rm Pr}(m_1)$, so kann man durch eine Verschiebung der Entscheidungsgrenze  $G$  eine etwas kleinere Fehlerwahrscheinlichkeit erreichen. Die nachfolgenden Ergebnisse werden ausführlich in der Musterlösung zur  Aufgabe 4.7  hergeleitet:

  • Bei ungleichen Symbolwahrscheinlichkeiten liegt die optimale Entscheidungsgrenze  $G_{\rm opt}$  zwischen den Regionen  $I_0$  und  $I_1$  näher beim unwahrscheinlicheren Symbol.
  • Die normierte optimale Verschiebung gegenüber der Grenze  $G = 0$  bei gleichwahrscheinlichen Symbolen beträgt
\[\gamma_{\rm opt} = \frac{G_{\rm opt}}{s_0 } = 2 \cdot \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} \hspace{0.05cm}.\]
  • Die Fehlerwahrscheinlichkeit ist dann gleich
$${\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Q} \big[ {d}/(2{\sigma_n}) \cdot (1 - \gamma_{\rm opt}) \big ] + {\rm Pr}(m_1) \cdot {\rm Q} \big [ {d}/(2{\sigma_n}) \cdot (1 + \gamma_{\rm opt}) \big ]\hspace{0.05cm}.$$
Dichtefunktionen für gleiche/ungleiche Symbolwahrscheinlichkeiten

$\text{Beispiel 2:}$  Der formale Parameter  $\rho$  (Abszisse) kennzeichnet wieder eine Realisierung der AWGN–Zufallsgröße  $r = s + n$.

Für das Folgende gelte weiter:

$$\boldsymbol{ s }_0 = (2 \cdot \sqrt{E}, \hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E}, \hspace{0.1cm} 0)$$
$$ \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E}, \hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.$$
  • Bei gleichwahrscheinlichen Symbolen   ⇒   ${\rm Pr}( m_0) = {\rm Pr}( m_1) = 1/2$  ergibt sich die optimale Entscheidungsgrenze zu  $G_{\rm opt} = 0$  (siehe obere Skizze). Damit erhält man für die Fehlerwahrscheinlichkeit:
$${\rm Pr}({ \cal E} ) = {\rm Q} \big [ {d}/(2{\sigma_n}) \big ] = {\rm Q} (2) \approx 2.26\% \hspace{0.05cm}.$$
  • Nun betrachten wir mit  ${\rm Pr}( m_0) = 3/4\hspace{0.05cm},\hspace{0.1cm}{\rm Pr}( m_1) = 1/4\hspace{0.05cm}$  ungleiche Symbolwahrscheinlichkeiten (untere Skizze). Die weiteren Systemgrößen seien gegenüber der oberen Grafik unverändert. In diesem Fall beträgt der optimale (normierte) Verschiebungsfaktor
\[\gamma = 2 \cdot \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{ {\rm Pr}( m_1)}{ {\rm Pr}( m_0)} = 2 \cdot \frac{ E}{16 \cdot E} \cdot {\rm ln} \hspace{0.15cm} \frac{1/4}{3/4 } \approx - 0.14 \hspace{0.05cm},\]
was einer Verschiebung um  $14\%$  hin zum unwahrscheinlicheren Symbol  $\boldsymbol {s}_1$  (also nach links) bedeutet. Dadurch wird die Fehlerwahrscheinlichkeit geringfügig kleiner als bei gleichwahrscheinlichen Symbolen:
\[{\rm Pr}({ \cal E} )= 0.75 \cdot {\rm Q} \left ( 2 \cdot 1.14 \right ) + 0.25 \cdot {\rm Q} \left ( 2 \cdot 0.86 \right ) = 0.75 \cdot 0.0113 + 0.25 \cdot 0.0427 \approx 1.92\% \hspace{0.05cm}.\]

Man erkennt aus diesen Zahlenwerten:

  • Durch die Schwellenverschiebung wird nun zwar das Symbol $\boldsymbol  {s}_1$  stärker verfälscht, das wahrscheinlichere Symbol  $\boldsymbol {s}_0$  jedoch überproportional weniger.
  • Das Ergebnis sollte aber nicht zu Fehlinterpretationen führen. Im unsymmetrischen Fall  ⇒  ${\rm Pr}( m_0) \ne {\rm Pr}( m_1)$  ergibt sich zwar eine kleinere Fehlerwahrscheinlichkeit als für  ${\rm Pr}( m_0) ={\rm Pr}( m_1) = 0.5$, aber mit jedem Symbol kann dann auch nur weniger Information übertragen werden.
  • Bei den gewählten Zahlenwerten  $0.81 \ \rm bit/Symbol$  statt  $1\ \rm bit/Symbol$. Aus informationstheoretischer Sicht wäre  ${\rm Pr}( m_0) ={\rm Pr}( m_1)$  optimal.


$\text{Fazit:}$ 

  • Im symmetrischen Fall   ⇒   ${\rm Pr}( m_0) ={\rm Pr}( m_1)$  können zur Entscheidungsfindung die herkömmlichen bedingten WDF–Werte  $p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m } ( \rho \hspace{0.05cm}\vert \hspace{0.05cm}m_i )$  herangezogen werden.
  • Im unsymmetrischen Fall   ⇒   ${\rm Pr}( m_0) \ne {\rm Pr}( m_1)$  müssen diese Funktionen vorher gewichtet werden:   ${\rm Pr}(m_i) \cdot p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m_i } ( \rho \hspace{0.05cm}\vert \hspace{0.05cm}m_i )$.

Im Folgenden wird dieser Sachverhalt berücksichtigt.

Entscheidungsregionen im nichtbinären Fall


Allgemein partitionieren die Entscheidungsregionen  $I_i$  den  $N$–dimensionalen reellen Raum in  $M$  zueinander disjunkte Gebiete. $I_i$  ist dabei definiert als die Menge aller Punkte, die zum Schätzwert  $m_i$  führen:

\[\boldsymbol{ \rho } \in I_i \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} \hat{m} = m_i, \hspace{0.3cm}{\rm wobei}\hspace{0.3cm}I_i = \left \{ \boldsymbol{ \rho } \in { \cal R}^N \hspace{0.05cm} | \hspace{0.05cm} {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm} | \hspace{0.05cm} m_i ) > {\rm Pr}( m_k) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } \hspace{0.05cm} | \hspace{0.05cm}m_k )\hspace{0.15cm} \forall k \ne i \right \} \hspace{0.05cm}.\]
  • Die Form der Entscheidungsregionen  $I_i$  mit  $i = 0$, ... , $M-1$  im  $N$–dimensionalen Raum hängen von den bedingten Wahrscheinlichkeitsdichtefunktionen  $p_{r \hspace{0.05cm}\vert \hspace{0.05cm}m }$  ab, also vom betrachteten Kanal.
  • In vielen Fällen – so auch beim AWGN–Kanal – sind die Entscheidungsgrenzen zwischen je zwei Signalpunkten Gerade, was die weiteren Betrachtungen vereinfacht.


AWGN–Entscheidungsregionen für
$N = 2$, $M = 3$

$\text{Beispiel 3:}$  Die Grafik zeigt die Entscheidungsregionen  $I_0$,  $I_1$  und  $I_2$  für ein Übertragungssystem mit den Parametern  $N = 2$  und  $M = 3$. Die normierten Sendevektoren sind dabei

\[\boldsymbol{ s }_0 = (2,\hspace{0.05cm} 2), \hspace{0.2cm} \hspace{0.01cm} \boldsymbol{ s }_1 = (1,\hspace{0.05cm} 3), \hspace{0.01cm} \hspace{0.2cm} \boldsymbol{ s }_2 = (1,\hspace{0.05cm} -1) \hspace{0.05cm}.\]

Es sind nun zwei Fälle zu unterscheiden:

  • Bei gleichwahrscheinlichen Symbolen   ⇒   ${\rm Pr}( m_0) = {\rm Pr}( m_1) ={\rm Pr}( m_2) = 1/3 $ verlaufen die Grenzen zwischen jeweils zwei Regionen stets geradlinig, mittig und rechtwinklig zu den Verbindungsgeraden.


  • Bei ungleichen Symbolwahrscheinlichkeiten sind dagegen die Entscheidungsgrenzen jeweils in Richtung des unwahrscheinlicheren Symbols (parallel) zu verschieben – umso weiter, je größer die AWGN–Streuung  $\sigma_n$ ist.


Fehlerwahrscheinlichkeitsberechnung im nichtbinären Fall


Nachdem die Entscheidungsregionen  $I_i$  festliegen, kann man die Symbolfehlerwahrscheinlichkeit des Gesamtsystems berechnen. Wir benutzen folgende Bezeichnungen, wobei wir aufgrund der Einschränkungen durch unseren Zeichensatz im Fließtext manchmal andere Namen als in Gleichungen verwenden müssen:

  • Symbolfehlerwahrscheinlichkeit:   ${\rm Pr}({ \cal E} ) = {\rm Pr(Symbolfehler)} \hspace{0.05cm},$
  • Wahrscheinlichkeit für eine korrekte Entscheidung:   ${\rm Pr}({ \cal C} ) = 1 - {\rm Pr}({ \cal E} ) = {\rm Pr(korrekte \hspace{0.15cm} Entscheidung)} \hspace{0.05cm},$
  • Bedingte Wahrscheinlichkeit einer korrekten Entscheidung unter der Bedingung   $m = m_i$:     ${\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) \hspace{0.05cm}.$


Mit diesen Definitionen gilt für die Wahrscheinlichkeit einer korrekten Entscheidung:

\[{\rm Pr}({ \cal C} ) \hspace{-0.1cm} = \hspace{-0.1cm} \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho } \hspace{0.05cm}.\]

Für den AWGN–Kanal gilt dabei entsprechend dem Abschnitt  $N$–dimensionales Gaußsches Rauschen:

\[{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) = \frac{1}{(\sqrt{2\pi} \cdot \sigma_n)^N} \cdot \int_{I_i} {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_i ||^2 \right ] \,{\rm d} \boldsymbol {\rho }\hspace{0.05cm}.\]
  • Dieses Integral muss im allgemeinen Fall numerisch berechnet werden.
  • Nur bei einigen wenigen, einfach beschreibbaren Entscheidungsregionen  $\{I_i\}$  ist eine analytische Lösung möglich.


$\text{Beispiel 4:}$  Beim AWGN–Kanal liegt eine 2D–Gaußglocke um den Sendepunkt  $\boldsymbol{ s }_i$, in der linken Grafik erkennbar an den konzentrischen Höhenlinien.

  • Etwas willkürlich ist zudem die Entscheidungsgerade  $G$  eingezeichnet.
  • Rechts dargestellt ist in einem anderen Koordinatensystem (verschoben und gedreht) allein die WDF der Rauschkomponente.


Zur Berechnung der Fehlerwahrscheinlichkeit bei AWGN

Die Grafik kann wie folgt interpretiert werden:

  • Die Wahrscheinlichkeit, dass der Empfangsvektor nicht in das "Sollgebiet"  $I_i$  fällt, sondern in das rot hinterlegte Gebiet  $I_k$, ist  $ {\rm Q} (A/\sigma_n)$.
  • $A$  bezeichnet den Abstand zwischen  $\boldsymbol{ s }_i$  und  $G$.
  • $\sigma_n$  gibt den Effektivwert (Wurzel aus der Varianz) des AWGN–Rauschens an und  ${\rm Q}(x)$  ist die Gaußsche Fehlerfunktion.
  • Entsprechend ist die Wahrscheinlichkeit für das Ereignis  $r \in I_i$  gleich dem Komplementärwert
\[{\rm Pr}({ \cal C}\hspace{0.05cm}\vert\hspace{0.05cm} m_i ) = {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) = 1 - {\rm Q} (A/\sigma_n)\hspace{0.05cm}.\]


Wir betrachten nun die oben angegebenen Gleichungen

\[{\rm Pr}({ \cal C} ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) \hspace{0.3cm}{\rm mit} \hspace{0.3cm} {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho } \hspace{0.05cm}\]

etwas genauer, wobei wir wieder von zwei Basisfunktionen  $(N = 2)$  und den drei Signalraumpunkten  $\boldsymbol{ s }_0$,  $\boldsymbol{ s }_1$  und  $\boldsymbol{ s }_2$ $(M = 3)$  ausgehen.

Fehlerwahrscheinlichkeitsberechnung beim AWGN-Kanal und  $M = 3$
  • Die Entscheidungsregionen  $I_0$,  $I_1$  und  $I_2$  sind  bestmöglich  gewählt.
  • Das AWGN–Rauschen ist in der Skizze durch jeweils drei kreisförmige Höhenlinien angedeutet.


Man erkennt aus dieser Darstellung:

  • Unter der Voraussetzung, dass  $m = m_i \ \Leftrightarrow \ \boldsymbol{ s } = \boldsymbol{ s }_i$  gesendet wurde, wird nur dann eine richtige Entscheidung getroffen, wenn der Empfangswert  $\boldsymbol{ r }$  in der Region  $I_i$  liegt.
  • Die Wahrscheinlichkeit  ${\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm}m_2)$  ist für  $i = 2$  (weitaus) am größten   ⇒   richtige Entscheidung. ${\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm}m_2)$  ist deutlich kleiner. Nahezu vernachlässigbar ist  ${\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm}m_2)$.


  • Die Verfälschungswahrscheinlichkeiten für  $m = m_0$  bzw.  $m = m_1$  lauten somit:
\[{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) + {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ),\]
\[ {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) ={\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 ) + {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 ) \hspace{0.05cm}.\]
  • Die größte Verfälschungswahrscheinlichkeit ergibt sich für  $m = m_0$. Wegen
\[{\rm Pr}(\boldsymbol{ r } \in I_1\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \approx {\rm Pr}(\boldsymbol{ r } \in I_0\hspace{0.05cm}|\hspace{0.05cm} m_1 ) \hspace{0.05cm}, \]
\[{\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_0 ) \gg {\rm Pr}(\boldsymbol{ r } \in I_2\hspace{0.05cm}|\hspace{0.05cm} m_1 ) \hspace{0.05cm}\]
gelten folgende Relationen:   ${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) > {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) >{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\hspace{0.05cm}. $

$\text{Fazit:}$  Diese Ergebnisse können wie folgt zusammengefasst werden:

  • Zur Berechnung der (mittleren) Fehlerwahrscheinlichkeit muss auch bei gleichwahrscheinlichen Symbolen allgemein über alle  $M$  Terme gemittelt werden.
  • Im Fall gleichwahrscheinlicher Symbole kann  ${\rm Pr}(m_i) = 1/M$  vor die Summation gezogen werden, was allerdings den Rechengang nicht sonderlich vereinfacht.
  • Nur bei symmetrischer Anordnung kann auf die Mittelung verzichtet werden.

Union Bound - Obere Schranke für die Fehlerwahrscheinlichkeit


Bei beliebigen Werten von  $M$  gilt für die Verfälschungswahrscheinlichkeit unter der Voraussetzung, dass die Nachricht  $m_i$  $($bzw. das Signal  $\boldsymbol{s}_i)$  gesendet wurde:

\[{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = {\rm Pr} \left [ \bigcup_{k \ne i} { \cal E}_{ik}\right ] \hspace{0.05cm},\hspace{0.5cm}{ \cal E}_{ik}\hspace{-0.1cm}: \boldsymbol{ r }{\rm \hspace{0.15cm}liegt \hspace{0.15cm}n\ddot{a}her \hspace{0.15cm}bei \hspace{0.15cm}}\boldsymbol{ s }_k {\rm \hspace{0.15cm}als \hspace{0.15cm}beim \hspace{0.15cm}Sollwert \hspace{0.15cm}}\boldsymbol{ s }_i \hspace{0.05cm}. \]

$\text{Definition:}$  Für diesen Ausdruck lässt sich mit einer Booleschen Ungleichung – der so genannten  Union Bound – eine obere Schranke angeben:

\[{\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_i ) \le \sum\limits_{k = 0, \hspace{0.1cm}k \ne i}^{M-1} {\rm Pr}({ \cal E}_{ik}) = \sum\limits_{k = 0, \hspace{0.1cm}k \ne i}^{M-1}{\rm Q} \big [ d_{ik}/(2{\sigma_n}) \big ]\hspace{0.05cm}. \]

Anmerkungen:

  • $d_{ik} = \vert \hspace{-0.05cm} \vert \boldsymbol{s}_i - \boldsymbol{s}_k \vert \hspace{-0.05cm} \vert$  ist der Abstand der Signalraumpunkte $\boldsymbol{s}_i$ und $\boldsymbol{s}_k$.
  • $\sigma_n$  gibt den Effektivwert des AWGN–Rauschens an.
  • Die Union Bound ist nur bei gleichwahrscheinlichen Symbolen   ⇒   ${\rm Pr}(m_i) = 1/M$  anwendbar.
  • Auch dann muss zur Berechnung der (mittleren) Fehlerwahrscheinlichkeit über alle  $m_i$  gemittelt werden.


$\text{Beispiel 5:}$  Die Grafik verdeutlicht die  Union Bound  am Beispiel  $M = 3$  mit gleichwahrscheinlichen Symbolen:   ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) =1/3$.

Zur Verdeutlichung der „Union Bound”

Zu diesen Darstellungen ist anzumerken:

  • Für die Symbolfehlerwahrscheinlichkeit gilt:
\[{\rm Pr}({ \cal E} ) = 1 - {\rm Pr}({ \cal C} ) \hspace{0.05cm},\hspace{0.2cm}{\rm Pr}({ \cal C} ) = {1}/{3} \cdot \big [ {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_0 ) + {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_1 ) + {\rm Pr}({ \cal C}\hspace{0.05cm}\vert \hspace{0.05cm} m_2 ) \big ]\hspace{0.05cm}.\]
  • Der erste Term  ${\rm Pr}(\boldsymbol{r} \in I_0\hspace{0.05cm}\vert \hspace{0.05cm} m_0)$  im Klammerausdruck unter der Voraussetzung  $m = m_0 \ \Leftrightarrow \ \boldsymbol{s} = \boldsymbol{s}_0$  ist in der linken Grafik durch die rote Region  $I_0$  visualisiert.
  • Die Komplementärregion  ${\rm Pr}(\boldsymbol{r} \not\in I_0\hspace{0.05cm}\vert \hspace{0.05cm} m_0)$  ist links entweder blau oder grün oder blau–grün schraffiert markiert. Es gilt  ${\rm Pr}({ \cal C}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) = 1 - {\rm Pr}({ \cal E}\hspace{0.05cm}\vert \hspace{0.05cm} m_0 )$  mit
$${\rm Pr}({ \cal E}\hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) = {\rm Pr}(\boldsymbol{ r } \in I_1 \hspace{0.05cm}\cup \hspace{0.05cm} \boldsymbol{ r } \in I_2 \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) \le {\rm Pr}(\boldsymbol{ r } \in I_1 \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) + {\rm Pr}(\boldsymbol{ r } \in I_2 \hspace{0.05cm}\vert\hspace{0.05cm} m_0 ) ={\rm Q} \big [ d_{01}/(2{\sigma_n}) \big ]+ {\rm Q} \big [ d_{02}/(2{\sigma_n}) \big ] \hspace{0.05cm}.$$
  • Das "$\le$"–Zeichen berücksichtigt hier, dass die blau–grün schraffierte Fläche sowohl zum Gebiet  "$\boldsymbol{r} \in I_1$"  als auch zum Gebiet  "$\boldsymbol{r} \in I_2$"  gehört, so dass die Summe einen zu großen Wert liefert. Das heißt:   Die Union Bound liefert stets eine obere Schranke.
  • Die mittlere Grafik verdeutlicht die Berechnung der Union Bound unter der Voraussetzung, dass  $m = m_1 \ \Leftrightarrow \ \boldsymbol{s} = \boldsymbol{s}_1$  gesendet wurde.
  • Dem rechten Bild liegt  $m = m_2 \ \Leftrightarrow \ \boldsymbol{s} = \boldsymbol{s}_2$  zugrunde.



Weitere Aufwandsreduzierung bei der Union Bound


Zur Definition der Nachbarmengen  $N(i)$

Die Abschätzung nach der "Union Bound" lässt sich weiter verbessern, indem man nur solche Signalraumpunkte berücksichtigt, die direkte Nachbarn des aktuellen Sendevektors  $\boldsymbol{s}_i$  sind:

\[{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{k = 0, \hspace{0.1cm} k \ne i}^{M-1}{\rm Q}\big [ d_{ik}/(2{\sigma_n}) \big ] \hspace{0.2cm} \Rightarrow \hspace{0.2cm} {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{k = 0, \hspace{0.1cm} k \hspace{0.05cm}\in \hspace{0.05cm}N(i)}^{M-1}\hspace{-0.4cm}{\rm Q} \big [ d_{ik}/(2{\sigma_n}) \big ] \hspace{0.05cm}. \]

Dazu definieren wir die Nachbarn von  $\boldsymbol{s}_i$ als

\[N(i) = \left \{ k \in \left \{ i = 0, 1, 2, \hspace{0.05cm}\text{...} \hspace{0.05cm}, M-1 \right \}\hspace{0.05cm}|\hspace{0.05cm} I_i {\rm \hspace{0.15cm}grenzt \hspace{0.15cm}direkt \hspace{0.15cm}an \hspace{0.15cm}}I_k \right \} \hspace{0.05cm}. \]

Die Grafik verdeutlicht diese Definiton am Beispiel  $M = 5$. Die Regionen  $I_0$  und  $I_3$  haben jeweils nur zwei direkte Nachbarn, während  $I_4$  an alle anderen Entscheidungsregionen angrenzt.

Durch die Einführung der Nachbarmengen  $N(i)$  wird die Qualität der Union Bound–Approximation verbessert, das heißt, die Schranke liegt dann näher an der tatsächlichen Fehlerwahrscheinlichkeit, wird also nach unten verschoben.
Eine weitere und häufig verwendete Schranke benutzt nur den minimalen Abstand  $d_{\rm min}$  zwischen zwei Signalraumpunkten. Im obigen Beispiel tritt dieser zwischen  $\boldsymbol{s}_1$  und  $\boldsymbol{s}_2$  auf. Für gleichwahrscheinliche Symbole   ⇒   ${\rm Pr}(m_i) =1/M$  gilt dann die folgende Abschätzung:

\[{\rm Pr}({ \cal E} ) \le \sum\limits_{i = 0 }^{M-1} \left [ {\rm Pr}(m_i) \cdot \sum\limits_{k \ne i }{\rm Q} \big [d_{ik}/(2{\sigma_n})\big ] \right ] \le \frac{1}{M} \cdot \sum\limits_{i = 0 }^{M-1} \left [ \sum\limits_{k \ne i } {\rm Q} [d_{\rm min}/(2{\sigma_n})] \right ] = \sum\limits_{k \ne i }{\rm Q} \big [d_{\rm min}/(2{\sigma_n})\big ] = (M-1) \cdot {\rm Q} \big [d_{\rm min}/(2{\sigma_n})\big ] \hspace{0.05cm}. \]

Hierzu ist anzumerken:

  • Diese Schranke ist auch für große  $M$–Werte sehr einfach zu berechnen. Bei vielen Anwendungen ergibt sich jedoch damit für die Fehlerwahrscheinlichkeit ein viel zu großer Wert.
  • Die Schranke ist nur dann gleich der tatsächlichen Fehlerwahrscheinlichkeit, wenn alle Regionen an alle anderen direkt angrenzen und die Distanzen aller  $M$  Signalpunkte zueinander gleich  $d_{\rm min}$  sind.
  • Im Sonderfall  $M = 2$  sind diese beiden Voraussetzungen häufig erfüllt, so dass die Schranke exakt mit der tatsächlichen Fehlerwahrscheinlichkeit übereinstimmt.

Aufgaben zum Kapitel


Aufgabe 4.6: Optimale Entscheidungsgrenze

Aufgabe 4.6Z: Signalraumkonstellationen

Aufgabe 4.7: Nochmals Entscheidungsgrenzen

Aufgabe 4.8: Entscheidungsregionen bei drei Symbolen

Aufgabe 4.8Z: Fehlerwahrscheinlichkeit bei drei Symbolen

Aufgabe 4.9: Entscheidungsregionen bei Laplace

Aufgabe 4.9Z: Laplace-verteiltes Rauschen

Aufgabe 4.10: Union Bound