Difference between revisions of "Information Theory/Different Entropy Measures of Two-Dimensional Random Variables"

From LNTwww
Line 175: Line 175:
 
[[File:P_ID2765__Inf_T_3_2_S3_neu.png|frame|Diagram of all entropies of the „dice experiment” ]]
 
[[File:P_ID2765__Inf_T_3_2_S3_neu.png|frame|Diagram of all entropies of the „dice experiment” ]]
  
Diese Größen sind in der Grafik zusammengestellt, wobei die Zufallsgröße  $R$  durch die Grundfarbe „Rot” und die Summe  $S$  durch die Grundfarbe „Grün” markiert sind.  Bedingte Entropien sind schraffiert.
+
These quantities are compiled in the graph, with the random quantity  $R$  marked by the basic colour „red” and the sum  $S$  marked by the basic colour „green” .  Conditional entropies are shaded.
Man erkennt aus dieser Darstellung:
+
One can see from this representation:
*Die Entropie  $H(R) = \log_2 (6) = 2.585\ \rm bit$  ist genau halb so groß wie die Verbundentropie  $H(RS)$.  Denn:  Kennt man  $R$, so liefert  $S$  genau die gleiche Information wie die Zufallsgröße  $B$, nämlich  $H(S \hspace{0.05cm} \vert \hspace{0.05cm}  R) = H(B) = \log_2 (6) = 2.585\ \rm bit$.  ''Hinweis'':   $H(R)$ = $H(S \hspace{0.05cm} \vert \hspace{0.05cm}  R)$  gilt allerdings nur in diesem Beispiel, nicht allgemein.
+
*The entropy  $H(R) = \log_2 (6) = 2.585\ \rm bit$  is exactly half as large as the compound entropy  $H(RS)$.  Because:  If one knows  $R$,  $S$  provides exactly the same information as the random quantity  $B$, namely  $H(S \hspace{0.05cm} \vert \hspace{0.05cm}  R) = H(B) = \log_2 (6) = 2.585\ \rm bit$.  ''Note'':   $H(R)$ = $H(S \hspace{0.05cm} \vert \hspace{0.05cm}  R)$  only applies in this example, not in general.
*Die Entropie  $H(S) = 3.274 \ \rm bit$  ist im vorliegenden Beispiel erwartungsgemäß größer als  $H(R)= 2.585\ \rm bit$.  Wegen  $H(S) + H(R \hspace{0.05cm} \vert \hspace{0.05cm}  S) = H(R) + H(S \hspace{0.05cm} \vert \hspace{0.05cm}  R)$  muss deshalb  $H(R \hspace{0.05cm} \vert \hspace{0.05cm}  S)$  gegenüber  $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$  um den gleichen Betrag  $I(R;\ S) = 0.689 \ \rm bit$  kleiner sein als  $H(R)$  gegenüber  $H(S)$.
+
*As expected, the entropy  $H(S) = 3.274 \ \rm bit$  is greater than  $H(R)= 2.585\ \rm bit$ in this example.  Because of  $H(S) + H(R \hspace{0.05cm} \vert \hspace{0.05cm}  S) = H(R) + H(S \hspace{0.05cm} \vert \hspace{0.05cm}  R)$ ,  $H(R \hspace{0.05cm} \vert \hspace{0.05cm}  S)$  must therefore be smaller than  $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$  by   $I(R;\ S) = 0.689 \ \rm bit$ .   $H(R)$  is also smaller than  $H(S)$ by   $I(R;\ S) = 0.689 \ \rm bit$ .
*Die Transinformation  (englisch:  ''Mutual Information'')  zwischen den Zufallsgrößen  $R$  und  $S$  ergibt sich aber auch aus der Gleichung
+
*The mutual information between the random variables  $R$  and  $S$  also results from the equation
 
:$$I(R;\ S) = H(R) + H(S) - H(RS) =  2.585\ {\rm bit} + 3.274\ {\rm bit} - 5.170\ {\rm bit} = 0.689\ {\rm bit} \hspace{0.05cm}. $$}}
 
:$$I(R;\ S) = H(R) + H(S) - H(RS) =  2.585\ {\rm bit} + 3.274\ {\rm bit} - 5.170\ {\rm bit} = 0.689\ {\rm bit} \hspace{0.05cm}. $$}}
  
  
==Bedingte Transinformation ==  
+
==Conditional Mutual Information ==  
 
<br>  
 
<br>  
Wir betrachten nun drei Zufallsgrößen&nbsp; $X$,&nbsp; $Y$&nbsp; und&nbsp; $Z$, die zueinander in Beziehung stehen (können).
+
We now consider three random variables&nbsp; $X$,&nbsp; $Y$&nbsp; and&nbsp; $Z$, that are (can be) related to each other.
 
 
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Die&nbsp; '''bedingte Transinformation'''&nbsp; (englisch:&nbsp; ''Conditional Mutual Information'')&nbsp; zwischen den Zufallsgrößen&nbsp; $X$&nbsp; und&nbsp; $Y$&nbsp; bei gegebenem&nbsp; $Z = z$&nbsp; lautet:
+
$\text{Definition:}$&nbsp; The&nbsp; '''conditional mutual information''' between the random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; for a given&nbsp; $Z = z$&nbsp; is as follows:
 
   
 
   
 
:$$I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z = z) =  H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z = z) - H(X\vert\hspace{0.05cm}Y ,\hspace{0.05cm} Z = z) \hspace{0.05cm}.$$
 
:$$I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z = z) =  H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z = z) - H(X\vert\hspace{0.05cm}Y ,\hspace{0.05cm} Z = z) \hspace{0.05cm}.$$
  
Man bezeichnet als die&nbsp; '''bedingte Transinformation'''&nbsp; zwischen den Zufallsgrößen&nbsp; $X$&nbsp; und&nbsp; $Y$&nbsp; für die Zufallsgröße&nbsp; $Z$&nbsp; allgemein nach Mittelung über alle&nbsp; $z \in Z$:
+
One denotes as the conditional&nbsp; '''conditional mutual information'''&nbsp; between the random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; for the random variable&nbsp; $Z$&nbsp; in general after averaging over all&nbsp; $z \in Z$:
 
   
 
   
 
:$$I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z ) =  H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z ) - H(X\vert\hspace{0.05cm}Y  Z )= \hspace{-0.3cm}
 
:$$I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z ) =  H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z ) - H(X\vert\hspace{0.05cm}Y  Z )= \hspace{-0.3cm}
Line 199: Line 198:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
$P_Z(Z)$&nbsp; ist die Wahrscheinlichkeitsfunktion (PMF) der Zufallsgröße&nbsp; $Z$&nbsp; und&nbsp; $P_Z(z)$&nbsp; die Wahrscheinlichkeit für die Realisierung&nbsp; $Z = z$.}}
+
$P_Z(Z)$&nbsp; is the probability function (PMF) of the random variable&nbsp; $Z$&nbsp; and&nbsp; $P_Z(z)$&nbsp; dis the probability for the realisation&nbsp; $Z = z$.}}
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Bitte beachten Sie:}$&nbsp;  
+
$\text{Please note:}$&nbsp;  
*Für die bedingte Entropie gilt bekanntlich die Größenrelation&nbsp; $H(X\hspace{0.05cm}\vert\hspace{0.05cm}Z) ≤ H(X)$.  
+
*For conditional entropy, as is well known, the relation &nbsp; $H(X\hspace{0.05cm}\vert\hspace{0.05cm}Z) ≤ H(X)$ holds.  
*Für die Transinformation gilt diese Größenrelation nicht unbedingt:  
+
*For the mutual information, this relation does not necessarily hold:  
*$I(X; Y\hspace{0.05cm}\vert\hspace{0.05cm}Z)$&nbsp; kann '''kleiner, gleich, aber auch größer sein'''&nbsp; als&nbsp; $I(X; Y)$.}}
+
*$I(X; Y\hspace{0.05cm}\vert\hspace{0.05cm}Z)$&nbsp; can be '''smaller, equal, but also larger than'''&nbsp; als&nbsp; $I(X; Y)$.}}
  
  
 
[[File:P_ID2824__Inf_T_3_2_S4a.png|right|frame|2D–PMF&nbsp; $P_{XZ}$ ]]
 
[[File:P_ID2824__Inf_T_3_2_S4a.png|right|frame|2D–PMF&nbsp; $P_{XZ}$ ]]
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 4:}$&nbsp;  
+
$\text{Example 4:}$&nbsp;  
Wir betrachten die binären Zufallsgrößen&nbsp; $X$,&nbsp; $Y$&nbsp; und&nbsp; $Z$&nbsp; mit folgenden Eigenschaften:
+
We consider the binary random variables&nbsp; $X$,&nbsp; $Y$&nbsp; and&nbsp; $Z$&nbsp; with the following properties:
* $X$&nbsp; und&nbsp; $Y$&nbsp; seien statistisch unabhängig.&nbsp; Für ihre Wahrscheinlichkeitsfunktionen gelte:   
+
* $X$&nbsp; and&nbsp; $Y$&nbsp; be statistically independent.&nbsp; Let the following be true for their probability functions:   
 
:$$P_X(X) = \big [1/2, \ 1/2 \big],  \hspace{0.2cm} P_Y(Y) = \big[1– p, \ p \big] \  ⇒  \  H(X) = 1\ {\rm bit},  \hspace{0.2cm}  H(Y) = H_{\rm bin}(p).$$
 
:$$P_X(X) = \big [1/2, \ 1/2 \big],  \hspace{0.2cm} P_Y(Y) = \big[1– p, \ p \big] \  ⇒  \  H(X) = 1\ {\rm bit},  \hspace{0.2cm}  H(Y) = H_{\rm bin}(p).$$
* $Z$&nbsp; ist die Modulo–2–Summe von&nbsp; $X$&nbsp; und&nbsp; $Y$: &nbsp;  $Z = X ⊕ Y$.
+
* $Z$&nbsp; is the modulo-2 sum of&nbsp; $X$&nbsp; and&nbsp; $Y$: &nbsp;  $Z = X ⊕ Y$.
  
  
Aus der Verbund–Wahrscheinlichkeitsfunktion&nbsp; $P_{XZ}$&nbsp; gemäß der oberen Grafik folgt:
+
From the joint probability function&nbsp; $P_{XZ}$&nbsp; according to the upper graph, it follows:
*Durch Summation der Spalten–Wahrscheinlichkeiten ergibt sich&nbsp; $P_Z(Z) = \big [1/2, \  1/2 \big ]$ &nbsp;  ⇒ &nbsp; $H(Z) = 1\ {\rm bit}$.
+
*Summing the column probabilities gives&nbsp; $P_Z(Z) = \big [1/2, \  1/2 \big ]$ &nbsp;  ⇒ &nbsp; $H(Z) = 1\ {\rm bit}$.
* $X$&nbsp; und&nbsp; $Z$&nbsp; sind ebenfalls statistisch unabhängig, da für die 2D–PMF&nbsp; $P_{XZ}(X, Z) = P_X(X) · P_Z(Z)$&nbsp; gilt.&nbsp;  
+
* $X$&nbsp; and&nbsp; $Z$&nbsp; are also statistically independent, since for the 2D-PMF &nbsp; $P_{XZ}(X, Z) = P_X(X) · P_Z(Z)$&nbsp; holds.&nbsp;  
*Daraus folgt: &nbsp; $H(Z\hspace{0.05cm}\vert\hspace{0.05cm}  X) = H(Z)$ &nbsp; und &nbsp; $H(X \hspace{0.05cm}\vert\hspace{0.05cm}  Z) = H(X)$ &nbsp; sowie &nbsp; $I(X; Z) = 0$.
+
*It follows that: &nbsp; $H(Z\hspace{0.05cm}\vert\hspace{0.05cm}  X) = H(Z)$ &nbsp; and &nbsp; $H(X \hspace{0.05cm}\vert\hspace{0.05cm}  Z) = H(X)$ &nbsp; sowie &nbsp; $I(X; Z) = 0$.
[[File:P_ID2826__Inf_T_3_2_S4b.png|right|frame|Bedingte 2D–PMF $P_{X\hspace{0.05cm}\vert\hspace{0.05cm}YZ}$]]
+
[[File:P_ID2826__Inf_T_3_2_S4b.png|right|frame|Conditional 2D–PMF $P_{X\hspace{0.05cm}\vert\hspace{0.05cm}YZ}$]]
<br><br>Aus der bedingten Wahrscheinlichkeitsfunktion&nbsp; $P_{X\vert YZ}$&nbsp; gemäß der unteren Grafik lassen sich berechnen:
+
<br><br>From the conditional probability function&nbsp; $P_{X\vert YZ}$&nbsp; according to the graph below, we can calculate:
* $H(X\hspace{0.05cm}\vert\hspace{0.05cm} YZ) = 0$,&nbsp; da alle&nbsp; $P_{X\hspace{0.05cm}\vert\hspace{0.05cm} YZ}$–Einträge entweder&nbsp; $0$&nbsp; oder&nbsp; $1$&nbsp; sind  &nbsp;  ⇒ &nbsp;  ''bedingte Entropie'',
+
* $H(X\hspace{0.05cm}\vert\hspace{0.05cm} YZ) = 0$,&nbsp; since all&nbsp; $P_{X\hspace{0.05cm}\vert\hspace{0.05cm} YZ}$ entries entweder&nbsp; $0$&nbsp; or&nbsp; $1$&nbsp; sind  &nbsp;  ⇒ &nbsp;  ''conditional entropy'',
* $I(X; YZ) = H(X) - H(X\hspace{0.05cm}\vert\hspace{0.05cm} YZ) = H(X)= 1 \ {\rm bit}$ &nbsp;  ⇒ &nbsp;  ''Transinformation'',
+
* $I(X; YZ) = H(X) - H(X\hspace{0.05cm}\vert\hspace{0.05cm} YZ) = H(X)= 1 \ {\rm bit}$ &nbsp;  ⇒ &nbsp;  ''mutual information'',
* $I(X; Y\vert Z) = H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z) =H(X)=1 \ {\rm bit} $  &nbsp;  ⇒ &nbsp;  ''bedingte Transinformation''.
+
* $I(X; Y\vert Z) = H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z) =H(X)=1 \ {\rm bit} $  &nbsp;  ⇒ &nbsp;  ''conditional mutual information''.
  
  
Im vorliegenden Beispiel ist also
+
In the present example
*die bedingte Transinformation $I(X; Y\hspace{0.05cm}\vert\hspace{0.05cm} Z) = 1$  
+
*the conditional mutual information $I(X; Y\hspace{0.05cm}\vert\hspace{0.05cm} Z) = 1$  
*größer als die herkömmliche Transinformation &nbsp;$I(X; Y) = 0$. }}
+
*is greater than the conventional mutual information &nbsp;$I(X; Y) = 0$. }}
  
 
 
 
 
 
 
 
 
==Kettenregel der Transinformation ==
+
==Chain rule of mutual information ==
 
<br>  
 
<br>  
Bisher haben wir die Transinformation nur zwischen zwei eindimensionalen Zufallsgrößen betrachtet.&nbsp; Nun erweitern wir die Definition auf insgesamt&nbsp; $n + 1$&nbsp; Zufallsgrößen, die wir aus Darstellungsgründen mit&nbsp; $X_1$,&nbsp; ... ,&nbsp; $X_n$&nbsp; sowie&nbsp; $Z$&nbsp; bezeichnen.&nbsp; Dann gilt:
+
So far we have only considered the transinformation between two one-dimensional random variables.&nbsp; Now we extend the definition to a total of&nbsp; $n + 1$&nbsp; random variables, which, for reasons of representation, we denote with&nbsp; $X_1$,&nbsp; ... ,&nbsp; $X_n$&nbsp; and&nbsp; $Z$&nbsp; .&nbsp; Then applies:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Kettenregel der Transinformation:}$&nbsp;
+
$\text{Chain rule of mutual information:}$&nbsp;
 
   
 
   
Die Transinformation zwischen der&nbsp; $n$–dimensionalen Zufallsgröße&nbsp; $X_1 X_2  \hspace{0.05cm}\text{...} \hspace{0.05cm}  X_n$&nbsp; und der Zufallsgröße&nbsp; $Z$&nbsp; lässt sich wie folgt darstellen und berechnen:
+
The mutual information between the&nbsp; $n$–dimensional random variable&nbsp; $X_1 X_2  \hspace{0.05cm}\text{...} \hspace{0.05cm}  X_n$&nbsp; and the random variable&nbsp; $Z$&nbsp; can be represented and calculated as follows:
 
   
 
   
 
:$$I(X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_n;Z) =  
 
:$$I(X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_n;Z) =  
Line 252: Line 251:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Beweis:}$&nbsp;
+
$\text{Proof:}$&nbsp;
Wir beschränken uns hier auf den Fall&nbsp; $n = 2$, also auf insgesamt drei Zufallsgrößen, und ersetzen&nbsp; $X_1$&nbsp; durch $X$ und&nbsp; $X_2$&nbsp; durch&nbsp;  $Y$.&nbsp; Dann erhalten wir:
+
We restrict ourselves here to the case&nbsp; $n = 2$, i.e. to a total of three random variables, and replace&nbsp; $X_1$&nbsp; by $X$ and&nbsp; $X_2$&nbsp; by&nbsp;  $Y$.&nbsp; Then we obtain:
 
   
 
   
 
:$$\begin{align*}I(X\hspace{0.05cm}Y;Z)  & = H(XY) - H(XY\hspace{0.05cm} \vert \hspace{0.05cm}Z) = \\
 
:$$\begin{align*}I(X\hspace{0.05cm}Y;Z)  & = H(XY) - H(XY\hspace{0.05cm} \vert \hspace{0.05cm}Z) = \\
Line 261: Line 260:
  
  
Aus dieser Gleichung erkennt man, dass die die Größenrelation &nbsp;$I(X Y; Z) ≥ I(X; Z)$&nbsp; immer gegeben ist.  
+
From this equation one can see that the size relation &nbsp;$I(X Y; Z) ≥ I(X; Z)$&nbsp; is always given.  
*Gleichheit ergibt sich für die bedingte Transinformation&nbsp; $I(Y; Z \hspace{0.05cm} \vert  \hspace{0.05cm} X) = 0$,&nbsp;  
+
*Equality results for the conditional mutual information&nbsp; $I(Y; Z \hspace{0.05cm} \vert  \hspace{0.05cm} X) = 0$,&nbsp;  
* also dann, wenn die Zufallsgrößen&nbsp; $Y$&nbsp; und&nbsp; $Z$&nbsp; für ein gegebenes&nbsp; $X$&nbsp; statistisch unabhängig sind.
+
* i.e. when the random variables&nbsp; $Y$&nbsp; and&nbsp; $Z$&nbsp; for a given&nbsp; $X$&nbsp; are statistically independent.
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 5:}$&nbsp;  Wir betrachten die&nbsp; [[Theory_of_Stochastic_Signals/Markovketten|Markovkette]] &nbsp; $X → Y → Z$.&nbsp; Für eine solche Konstellation gilt stets das&nbsp; ''Data Processing Theorem''&nbsp; mit der folgenden Konsequenz, die sich aus der Kettenregel der Transinformation ableiten lässt:
+
$\text{Example 5:}$&nbsp;  We consider the&nbsp; [[Theory_of_Stochastic_Signals/Markovketten|Markov chain]] &nbsp; $X → Y → Z$.&nbsp; For such a constellation, the&nbsp; ''Data Processing Theorem''&nbsp; always holds with the following consequence, which can be derived from the chain rule of mutual information:
 
   
 
   
 
:$$I(X;Z) \hspace{-0.05cm}  \le  \hspace{-0.05cm}I(X;Y ) \hspace{0.05cm},$$
 
:$$I(X;Z) \hspace{-0.05cm}  \le  \hspace{-0.05cm}I(X;Y ) \hspace{0.05cm},$$
 
:$$I(X;Z) \hspace{-0.05cm}  \le  \hspace{-0.05cm} I(Y;Z ) \hspace{0.05cm}.$$
 
:$$I(X;Z) \hspace{-0.05cm}  \le  \hspace{-0.05cm} I(Y;Z ) \hspace{0.05cm}.$$
  
Das Theorem besagt somit:
+
The theorem thus states:
*Man kann durch Manipulation&nbsp; $($''Processing''&nbsp; $Z)$&nbsp; der Daten&nbsp; $Y$&nbsp; keine zusätzliche Information über den Eingang&nbsp; $X$&nbsp; gewinnen.
+
*One cannot gain any additional information about input&nbsp; $X$&nbsp by manipulating $($''processing''&nbsp; $Z)$&nbsp;&nbsp; data&nbsp; $Y$&nbsp;.
*Die Datenverarbeitung&nbsp; $Y → Z$&nbsp; $($durch einen zweiten Prozessor$)$ dient nur dem Zweck, die Information über&nbsp; $X$&nbsp; besser sichtbar zu machen.
+
*Data processing&nbsp; $Y → Z$&nbsp; $($by a second processor$)$ only serves the purpose of making the information about&nbsp; $X$&nbsp; more visible.
  
  
Weitere Informationen zum&nbsp; ''Data Processing Theorem''&nbsp; finden Sie in der&nbsp; [[Aufgaben:Aufgabe_3.15:_Data_Processing_Theorem|Aufgabe 3.15]].}}  
+
For more information on the&nbsp; ''Data Processing Theorem''&nbsp; see&nbsp; [[Aufgaben:Aufgabe_3.15:_Data_Processing_Theorem|task 3.15]].}}  
  
  
==Aufgaben zum Kapitel==
+
==Relevant tasks==
 
<br>  
 
<br>  
 
[[Aufgaben:3.7 Einige Entropieberechnungen|Aufgabe 3.7: Einige Entropieberechnungen]]
 
[[Aufgaben:3.7 Einige Entropieberechnungen|Aufgabe 3.7: Einige Entropieberechnungen]]

Revision as of 13:24, 4 April 2021


Definition of entropy using supp(PXY)


We briefly summarise the results of the last chapter again, assuming the two-dimensional random variable  $XY$  with the probability function  $P_{XY}(X,\ Y)$ .  At the same time we use the notation

$${\rm supp} (P_{XY}) = \big \{ \hspace{0.05cm}(x,\ y) \in XY \hspace{0.05cm}, \hspace{0.3cm} {\rm where} \hspace{0.15cm} P_{XY}(X,\ Y) \ne 0 \hspace{0.05cm} \big \} \hspace{0.05cm};$$

$\text{Summarising the last chapter:}$ 

With this subset $\text{supp}(P_{XY}) ⊂ P_{XY}$ , the following holds for

  • the  joint entropy :
$$H(XY) = {\rm E}\hspace{-0.1cm} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] =\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.05cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{XY}(x, y)} \hspace{0.05cm}.$$
  • the  entropies of the 1D random variables  $X$  and  $Y$:
$$H(X) = {\rm E}\hspace{-0.1cm} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ] =\hspace{-0.2cm} \sum_{x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{X})} \hspace{-0.2cm} P_{X}(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(x)} \hspace{0.05cm},$$
$$H(Y) = {\rm E}\hspace{-0.1cm} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{Y}(Y)}\right ] =\hspace{-0.2cm} \sum_{y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Y})} \hspace{-0.2cm} P_{Y}(y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{Y}(y)} \hspace{0.05cm}.$$


$\text{Example 1:}$  We refer again to the examples on the  joint probability and joint entropy  in the last chapter. For the 2D probability function  $P_{RB}(R, B)$  in  $\text{example 5}$  there with the parameters

  • $R$   ⇒   numbers of the red die and
  • $B$   ⇒   number of the blue die


the sets  $P_{RB}$  and  $\text{supp}(P_{RB})$  are identical.  Here, all  $6^2 = 36$  squares are occupied by non-zero values.

For the 2D probability function  $P_{RS}(R, S)$  in  $\text{example 6}$  mit den Parametern

  • $R$   ⇒   numbers of the red die
  • $S = R + B$   ⇒   sum of both dice


there are  $6 · 11 = 66$ squares, many of which, however, are empty, i.e. stand for the probability „0” .

  • The subset  $\text{supp}(P_{RS})$ , on the other hand, contains only the  $36$  shaded squares with non-zero probabilities.
  • The entropy remains the same no matter whether one averages over all elements of  $P_{RS}$  or only over the elements of   $\text{supp}(P_{RS})$ since for  $x → 0$  the limit is  $x · \log_2 ({1}/{x}) = 0$  ist.


Conditional probability and conditional entropy


In the book „Theory of Stochastic Signals” the following   conditional probabilities  were given for the case of two events  $X$  and  $Y$  ⇒   Bayes' theorem:

$${\rm Pr} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = \frac{{\rm Pr} (X \cap Y)}{{\rm Pr} (Y)} \hspace{0.05cm}, \hspace{0.5cm} {\rm Pr} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = \frac{{\rm Pr} (X \cap Y)}{{\rm Pr} (X)} \hspace{0.05cm}.$$

Applied to probability functions, one thus obtains:

$$P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = \frac{P_{XY}(X, Y)}{P_{Y}(Y)} \hspace{0.05cm}, \hspace{0.5cm} P_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = \frac{P_{XY}(X, Y)}{P_{X}(X)} \hspace{0.05cm}.$$

Analogous to the  joint entropy  $H(XY)$ , the following entropy functions can be derived here:

$\text{Definitions:}$ 

  • The  conditional entropy of the random variable  $X$  under condition  $Y$  is:
$$H(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)}\right ] = \hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (x \hspace{-0.05cm}\mid \hspace{-0.05cm} y)}=\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{Y}(y)}{P_{XY}(x, y)} \hspace{0.05cm}.$$
  • Similarly, for the  second conditional entropy we obtain:
$$H(Y \hspace{-0.1cm}\mid \hspace{-0.05cm} X) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}Y\hspace{0.03cm} \mid \hspace{0.01cm} X} (Y \hspace{-0.08cm}\mid \hspace{-0.05cm}X)}\right ] =\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}Y\hspace{-0.03cm} \mid \hspace{-0.01cm} X} (y \hspace{-0.05cm}\mid \hspace{-0.05cm} x)}=\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{X}(x)}{P_{XY}(x, y)} \hspace{0.05cm}.$$


In the argument of the logarithm function there is always a conditional probability function   ⇒   $P_{X\hspace{0.03cm}| \hspace{0.03cm}Y}(·)$  bzw.  $P_{Y\hspace{0.03cm}|\hspace{0.03cm}X}(·)$, while the joint probability   ⇒   $P_{XY}(·)$ is needed for the expectation value formation.

For the conditional entropies, there are the following limitations:

  • Both  $H(X|Y)$  and  $H(Y|X)$  are always greater than or equal to zero.  From  $H(X|Y) = 0$  it follows directly also  $H(Y|X) = 0$.  Both are only possible for   disoint sets  $X$  and  $Y$  .
  •   $H(X|Y) ≤ H(X)$  and  $H(Y|X) ≤ H(Y)$ always apply.  These statements are plausible if one realises that one can also use „uncertainty” synonymously for „entropy” .  For:   the uncertainty with respect to the quantity  $X$  cannot be increased by knowing  $Y$  . 
  • Except in the case of statistical independence   ⇒   $H(X|Y) = H(X)$ ,   $H(X|Y) < H(X)$ always holds.  Because of  $H(X) ≤ H(XY)$  and  $H(Y) ≤ H(XY)$ ,   $H(X|Y) ≤ H(XY)$  and  $H(Y|X) ≤ H(XY)$ therefore also hold.   Thus, a conditional entropy can never become larger than the joint entropy.


$\text{Example 2:}$  We consider the joint probabilities  $P_{RS}(·)$  of our dice experiment, which were determined in the  last chapter  als  $\text{example 6}$  .    $P_{RS}(·)$  is given again in the middle of the following graph.

Joint probabilities  $P_{RS}$  and conditional probabilities  $P_{S \vert R}$  and  $P_{R \vert S}$

The two conditional probability functions are drawn on the outside:

  • Given on the left is the conditional probability function  $P_{S \vert R}(⋅) = P_{SR}(⋅)/P_R(⋅)$.  Because of  $P_R(R) = \big [1/6, \ 1/6, \ 1/6, \ 1/6, \ 1/6, \ 1/6 \big ]$  the same probability value   $1/6$ is here in all shaded fields   ⇒   $\text{supp}(P_{S\vert R}) = \text{supp}(P_{R\vert S})$  .  From this follows for the conditional entropy:
$$H(S \hspace{-0.1cm}\mid \hspace{-0.13cm} R) = \hspace{-0.2cm} \sum_{(r, s) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{RS})} \hspace{-0.6cm} P_{RS}(r, s) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}S \hspace{0.03cm} \mid \hspace{0.03cm} R} (s \hspace{-0.05cm}\mid \hspace{-0.05cm} r)} = 36 \cdot \frac{1}{36} \cdot {\rm log}_2 \hspace{0.1cm} (6) = 2.585\ {\rm bits} \hspace{0.05cm}.$$
  • On the right, the conditional probability function  $P_{R\vert S}(⋅) = P_{RS}(⋅)/P_S(⋅)$  is given with  $P_S(⋅)$  according to $\text{example 6}$  .  The same non-zero fields result   ⇒   $\text{supp}(P_{R\vert S}) = \text{supp}(P_{S\vert R})$.  However, the probability values now increase continuously from the centre  $(1/6)$  towards the edges up to probability  $1$  in the corners. It follows that:
$$H(R \hspace{-0.1cm}\mid \hspace{-0.13cm} S) = \frac{1}{36} \cdot {\rm log}_2 \hspace{0.1cm} (6) + \frac{2}{36} \cdot \sum_{i=1}^5 \big [ i \cdot {\rm log}_2 \hspace{0.1cm} (i) \big ]= 1.896\ {\rm bit} \hspace{0.05cm}.$$

On the other hand, for the conditional probabilities of the 2D random variable  $RB$  according to  $\text{example 5}$ , one obtains because of  $P_{RB}(⋅) = P_R(⋅) · P_B(⋅)$:

$$\begin{align*}H(B \hspace{-0.1cm}\mid \hspace{-0.13cm} R) \hspace{-0.15cm} & = \hspace{-0.15cm} H(B) = {\rm log}_2 \hspace{0.1cm} (6) = 2.585\ {\rm bit} \hspace{0.05cm},\\ H(R \hspace{-0.1cm}\mid \hspace{-0.13cm} B) \hspace{-0.15cm} & = \hspace{-0.15cm} H(R) = {\rm log}_2 \hspace{0.1cm} (6) = 2.585\ {\rm bit} \hspace{0.05cm}.\end{align*}$$


Mutual information between two random variables


We consider the random variable  $XY$  with the 2D probability function  $P_{XY}(X, Y)$. Let the 1D functionsn  $P_X(X)$  and  $P_Y(Y)$ also be known.

Now the following questions arise:

  • How does knowledge of the random variable  $Y$  reduce the uncertainty with respect to  $X$?
  • How does knowledge of the random variable  $X$  reduce the uncertainty with respect to  $Y$?


To answer this question, we need a definition that is substantial for information theory:

$\text{Definition:}$  The  mutual information between the random variables  $X$  and  $Y$ – both over the same alphabet – is given as follows:

$$I(X;\ Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \cdot P_{Y}(Y) }\right ] =\hspace{-0.25cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY})} \hspace{-0.8cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(x, y)} {P_{X}(x) \cdot P_{Y}(y) } \hspace{0.01cm}.$$

A comparison with the  last chapter  shows that the transinformation can also be written as a  Kullback–Leibler distance  between the 2D-PMF  $P_{XY}$  and the product  $P_X · P_Y$  :

$$I(X;Y) = D(P_{XY} \hspace{0.05cm}\vert \vert \hspace{0.05cm} P_X \cdot P_Y) \hspace{0.05cm}.$$

It is thus obvious that  $I(X;\ Y) ≥ 0$  always holds.  Because of the symmetry,   $I(Y;\ X)$ = $I(X;\ Y)$ is also true.


  • By splitting the  $\log_2$ argument according to
$$I(X;Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm} \frac{1} {P_{X}(X) }\right ] - {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm} \frac {P_{Y}(Y) }{P_{XY}(X, Y)} \right ] $$
is obtained using  $P_{X|Y}(\cdot) = P_{XY}(\cdot)/P_Y(Y)$:
$$I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) \hspace{0.05cm}.$$
  • This means:   The uncertainty regarding the random quantity  $X$   ⇒   entropy  $H(X)$  decreases by the amount  $H(X|Y)$  when  $Y$ is known.  The remainder is the mutual information  $I(X; Y)$.
  • With a different splitting, one arrives at the result
$$I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{0.05cm}.$$
  • Ergo:   The mutual information  $I(X; Y)$  is symmetrical   ⇒   $X$  says just as much about  $Y$  as  $Y$  says about  $X$   ⇒   mutual information. The semicolon indicates equality.

$\text{Conclusion:}$  Often the equations mentioned here are clarified by a diagram, as in the following examples.  From this you can see that the following equations also apply:

$$I(X;\ Y) = H(X) + H(Y) - H(XY) \hspace{0.05cm},$$
$$I(X;\ Y) = H(XY) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{0.05cm}.$$


$\text{Example 3:}$  We return (for the last time) to the  dice experiment  with the red  $(R)$  and blue  $(B)$  dice.  The random variable  $S$  gives the sum of the two dice:  $S = R + B$.  Here we consider the 2D random variable  $RS$.  In earlier examples we calculated

  • the entropies  $H(R) = 2.585 \ \rm bit$  and  $H(S) = 3.274 \ \rm bit$   ⇒  example 6  in the last chapter,
  • the join entropies  $H(RS) = 5.170 \ \rm bit$   ⇒   example 6  in the last chapter,
  • die conditional entropies  $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R) = 2.585 \ \rm bit$  and  $H(R \hspace{0.05cm} \vert \hspace{0.05cm} S) = 1.896 \ \rm bit$   ⇒   example 2  in the previous section.


Diagram of all entropies of the „dice experiment”

These quantities are compiled in the graph, with the random quantity  $R$  marked by the basic colour „red” and the sum  $S$  marked by the basic colour „green” .  Conditional entropies are shaded. One can see from this representation:

  • The entropy  $H(R) = \log_2 (6) = 2.585\ \rm bit$  is exactly half as large as the compound entropy  $H(RS)$.  Because:  If one knows  $R$,  $S$  provides exactly the same information as the random quantity  $B$, namely  $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R) = H(B) = \log_2 (6) = 2.585\ \rm bit$.  Note:   $H(R)$ = $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$  only applies in this example, not in general.
  • As expected, the entropy  $H(S) = 3.274 \ \rm bit$  is greater than  $H(R)= 2.585\ \rm bit$ in this example.  Because of  $H(S) + H(R \hspace{0.05cm} \vert \hspace{0.05cm} S) = H(R) + H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ ,  $H(R \hspace{0.05cm} \vert \hspace{0.05cm} S)$  must therefore be smaller than  $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$  by   $I(R;\ S) = 0.689 \ \rm bit$ .   $H(R)$  is also smaller than  $H(S)$ by   $I(R;\ S) = 0.689 \ \rm bit$ .
  • The mutual information between the random variables  $R$  and  $S$  also results from the equation
$$I(R;\ S) = H(R) + H(S) - H(RS) = 2.585\ {\rm bit} + 3.274\ {\rm bit} - 5.170\ {\rm bit} = 0.689\ {\rm bit} \hspace{0.05cm}. $$


Conditional Mutual Information


We now consider three random variables  $X$,  $Y$  and  $Z$, that are (can be) related to each other.

$\text{Definition:}$  The  conditional mutual information between the random variables  $X$  and  $Y$  for a given  $Z = z$  is as follows:

$$I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z = z) = H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z = z) - H(X\vert\hspace{0.05cm}Y ,\hspace{0.05cm} Z = z) \hspace{0.05cm}.$$

One denotes as the conditional  conditional mutual information  between the random variables  $X$  and  $Y$  for the random variable  $Z$  in general after averaging over all  $z \in Z$:

$$I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z ) = H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z ) - H(X\vert\hspace{0.05cm}Y Z )= \hspace{-0.3cm} \sum_{z \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Z})} \hspace{-0.25cm} P_{Z}(z) \cdot I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z = z) \hspace{0.05cm}.$$

$P_Z(Z)$  is the probability function (PMF) of the random variable  $Z$  and  $P_Z(z)$  dis the probability for the realisation  $Z = z$.


$\text{Please note:}$ 

  • For conditional entropy, as is well known, the relation   $H(X\hspace{0.05cm}\vert\hspace{0.05cm}Z) ≤ H(X)$ holds.
  • For the mutual information, this relation does not necessarily hold:
  • $I(X; Y\hspace{0.05cm}\vert\hspace{0.05cm}Z)$  can be smaller, equal, but also larger than  als  $I(X; Y)$.


2D–PMF  $P_{XZ}$

$\text{Example 4:}$  We consider the binary random variables  $X$,  $Y$  and  $Z$  with the following properties:

  • $X$  and  $Y$  be statistically independent.  Let the following be true for their probability functions:
$$P_X(X) = \big [1/2, \ 1/2 \big], \hspace{0.2cm} P_Y(Y) = \big[1– p, \ p \big] \ ⇒ \ H(X) = 1\ {\rm bit}, \hspace{0.2cm} H(Y) = H_{\rm bin}(p).$$
  • $Z$  is the modulo-2 sum of  $X$  and  $Y$:   $Z = X ⊕ Y$.


From the joint probability function  $P_{XZ}$  according to the upper graph, it follows:

  • Summing the column probabilities gives  $P_Z(Z) = \big [1/2, \ 1/2 \big ]$   ⇒   $H(Z) = 1\ {\rm bit}$.
  • $X$  and  $Z$  are also statistically independent, since for the 2D-PMF   $P_{XZ}(X, Z) = P_X(X) · P_Z(Z)$  holds. 
  • It follows that:   $H(Z\hspace{0.05cm}\vert\hspace{0.05cm} X) = H(Z)$   and   $H(X \hspace{0.05cm}\vert\hspace{0.05cm} Z) = H(X)$   sowie   $I(X; Z) = 0$.
Conditional 2D–PMF $P_{X\hspace{0.05cm}\vert\hspace{0.05cm}YZ}$



From the conditional probability function  $P_{X\vert YZ}$  according to the graph below, we can calculate:

  • $H(X\hspace{0.05cm}\vert\hspace{0.05cm} YZ) = 0$,  since all  $P_{X\hspace{0.05cm}\vert\hspace{0.05cm} YZ}$ entries entweder  $0$  or  $1$  sind   ⇒   conditional entropy,
  • $I(X; YZ) = H(X) - H(X\hspace{0.05cm}\vert\hspace{0.05cm} YZ) = H(X)= 1 \ {\rm bit}$   ⇒   mutual information,
  • $I(X; Y\vert Z) = H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z) =H(X)=1 \ {\rm bit} $   ⇒   conditional mutual information.


In the present example

  • the conditional mutual information $I(X; Y\hspace{0.05cm}\vert\hspace{0.05cm} Z) = 1$
  • is greater than the conventional mutual information  $I(X; Y) = 0$.


Chain rule of mutual information


So far we have only considered the transinformation between two one-dimensional random variables.  Now we extend the definition to a total of  $n + 1$  random variables, which, for reasons of representation, we denote with  $X_1$,  ... ,  $X_n$  and  $Z$  .  Then applies:

$\text{Chain rule of mutual information:}$ 

The mutual information between the  $n$–dimensional random variable  $X_1 X_2 \hspace{0.05cm}\text{...} \hspace{0.05cm} X_n$  and the random variable  $Z$  can be represented and calculated as follows:

$$I(X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_n;Z) = I(X_1;Z) + I(X_2;Z \vert X_1) + \hspace{0.05cm}\text{...} \hspace{0.1cm}+ I(X_n;Z\vert X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_{n-1}) = \sum_{i = 1}^{n} I(X_i;Z \vert X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_{i-1}) \hspace{0.05cm}.$$


$\text{Proof:}$  We restrict ourselves here to the case  $n = 2$, i.e. to a total of three random variables, and replace  $X_1$  by $X$ and  $X_2$  by  $Y$.  Then we obtain:

$$\begin{align*}I(X\hspace{0.05cm}Y;Z) & = H(XY) - H(XY\hspace{0.05cm} \vert \hspace{0.05cm}Z) = \\ & = \big [ H(X)+ H(Y\hspace{0.05cm} \vert \hspace{0.05cm} X)\big ] - \big [ H(X\hspace{0.05cm} \vert \hspace{0.05cm} Z) + H(Y\hspace{0.05cm} \vert \hspace{0.05cm} XZ)\big ] =\\ & = \big [ H(X)- H(X\hspace{0.05cm} \vert \hspace{0.05cm} Z)\big ] - \big [ H(Y\hspace{0.05cm} \vert \hspace{0.05cm} X) + H(Y\hspace{0.05cm} \vert \hspace{0.05cm}XZ)\big ]=\\ & = I(X;Z) + I(Y;Z \hspace{0.05cm} \vert \hspace{0.05cm} X) \hspace{0.05cm}.\end{align*}$$


From this equation one can see that the size relation  $I(X Y; Z) ≥ I(X; Z)$  is always given.

  • Equality results for the conditional mutual information  $I(Y; Z \hspace{0.05cm} \vert \hspace{0.05cm} X) = 0$, 
  • i.e. when the random variables  $Y$  and  $Z$  for a given  $X$  are statistically independent.


$\text{Example 5:}$  We consider the  Markov chain   $X → Y → Z$.  For such a constellation, the  Data Processing Theorem  always holds with the following consequence, which can be derived from the chain rule of mutual information:

$$I(X;Z) \hspace{-0.05cm} \le \hspace{-0.05cm}I(X;Y ) \hspace{0.05cm},$$
$$I(X;Z) \hspace{-0.05cm} \le \hspace{-0.05cm} I(Y;Z ) \hspace{0.05cm}.$$

The theorem thus states:

  • One cannot gain any additional information about input  $X$&nbsp by manipulating $($processing  $Z)$   data  $Y$ .
  • Data processing  $Y → Z$  $($by a second processor$)$ only serves the purpose of making the information about  $X$  more visible.


For more information on the  Data Processing Theorem  see  task 3.15.


Relevant tasks


Aufgabe 3.7: Einige Entropieberechnungen

Aufgabe 3.8: Nochmals Transinformation

Aufgabe 3.8Z: Tupel aus ternären Zufallsgrößen

Aufgabe 3.9: Bedingte Transinformation