Difference between revisions of "Theory of Stochastic Signals/Exponentially Distributed Random Variables"

From LNTwww
Line 69: Line 69:
 
'''(3)'''   The weight  $1/8$  corresponds to the green areas in the PDF $f_{u}(u).$}}  
 
'''(3)'''   The weight  $1/8$  corresponds to the green areas in the PDF $f_{u}(u).$}}  
  
==Erzeugung einer exponentialverteilten Zufallsgröße==
+
==Generation of an exponentially distributed random variable==
 
<br>
 
<br>
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=  
$\text{Vorgehensweise:}$&nbsp;  
+
$\text{procedure:}$&nbsp;  
Nun wird vorausgesetzt, dass die zu transformierende Zufallsgröße&nbsp; $u$&nbsp; gleichverteilt zwischen&nbsp; $0$&nbsp; (inklusive) und&nbsp; $1$&nbsp; (exklusive) ist.&nbsp; Außerdem betrachten wir die monoton steigende Kennlinie
+
Now we assume that the random variable to be transformed&nbsp; $u$&nbsp; is uniformly distributed between&nbsp; $0$&nbsp; (inclusive) and&nbsp; $1$&nbsp; (exclusive).&nbsp; Moreover, we consider the monotonically increasing characteristic curve
 
:$$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$
 
:$$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$
  
Es  kann gezeigt werden, dass durch diese Kennlinie&nbsp; $x=g_1(u)$&nbsp; eine  einseitig exponentialverteilte Zufallsgröße&nbsp; $x$&nbsp; mit folgender PDF entsteht&nbsp; <br>(Herleitung siehe [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Herleitung_der_zugeh.C3.B6rigen_Transformationskennlinie|nächste Seite]]):  
+
It can be shown that by this characteristic&nbsp; $x=g_1(u)$&nbsp; a one-sided exponentially distributed random variable&nbsp; $x$&nbsp; with the following PDF arises&nbsp; <br>(derivation see [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables/Derivation_of_the_corresponding_transformation_characteristic|next page]]):  
:$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\it x}>0.$$
+
:$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\it x}>0.$$
*Für&nbsp; $x = 0$&nbsp; ist der PDF-Wert nur halb so groß&nbsp; $(\lambda/2)$.
+
*For&nbsp; $x = 0$&nbsp; the PDF value is half&nbsp; $(\lambda/2)$.
* Negative&nbsp; $x$-Werte treten nicht auf, da für&nbsp; $0 ≤ u < 1$&nbsp; das Argument der (natürlichen) Logarithmus–Funktion nicht kleiner wird als&nbsp; $1$.}}
+
* Negative&nbsp; $x$ values do not occur because for&nbsp; $0 ≤ u < 1$&nbsp; the argument of the (natural) logarithm function does not become smaller than&nbsp; $1$.}}
 
   
 
   
  
Die gleiche PDF erhält man übrigens mit der monoton fallenden Kennlinie
+
By the way, the same PDF is obtained with the monotonically decreasing characteristic curve
 
:$$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$
 
:$$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$
  
Bitte beachten Sie:
+
Please note:
*Bei einer Rechnerimplementierung entsprechend der ersten Transformationskennlinie&nbsp; $x=g_1(u)$&nbsp; ist der Wert&nbsp; $u = 1$&nbsp; auszuschließen.
+
*When using a computer implementation corresponding to the first transformation characteristic&nbsp; $x=g_1(u)$&nbsp; the value&nbsp; $u = 1$&nbsp; must be excluded.
*Verwendet man die zweite Transformationskennlinie&nbsp; $x=g_2(u)$, so muss dagegen der Wert&nbsp; $u =0$&nbsp; ausgeschlossen werden.  
+
*If one uses the second transformation characteristic&nbsp; $x=g_2(u)$, on the other hand, the value&nbsp; $u =0$&nbsp; must be excluded.  
  
  
Das Lernvideo&nbsp; [[Erzeugung_einer_Exponentialverteilung_(Lernvideo)|Erzeugung einer Exponentialverteilung]]&nbsp; soll die  hier abgeleiteten Transformationen verdeutlichen.
+
The (German) learning video&nbsp; [[Erzeugung_einer_Exponentialverteilung_(Lernvideo)|Erzeugung einer Exponentialverteilung]]&nbsp; $\Rightarrow$ Generation of an exponential distribution, shall clarify the transformations derived here.
  
==Herleitung der zugehörigen Transformationskennlinie==
+
==Derivation of the corresponding transformation characteristic==
 
<br>
 
<br>
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
$\text{Aufgabenstellung:}$&nbsp;  
+
$\text{Exercise:}$&nbsp;  
Nun wird die bereits auf der letzten Seite verwendete Transformationskennlinie&nbsp; $x = g_1(u)= g(u)$&nbsp; hergeleitet, die aus einer zwischen&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; gleichverteilten Zufallsgröße&nbsp; $u$&nbsp; mit der  Wahrscheinlichkeitsdichtefunktion (PDF)&nbsp; $f_{u}(u)$&nbsp; eine einseitig exponentialverteilte Zufallsgröße&nbsp; $x$&nbsp; mit der PDF&nbsp; $f_{x}(x)$&nbsp; formt:
+
Now derive the transformation characteristic&nbsp; $x = g_1(u)= g(u)$&nbsp; already used on the last page, which is derived from a random variable&nbsp; equally distributed between&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; ; $u$&nbsp; with the probability density function (PDF)&nbsp; $f_{u}(u)$&nbsp; forms a one-sided exponentially distributed random variable&nbsp; $x$&nbsp; with the PDF&nbsp; $f_{x}(x)$&nbsp; :
  
:$$f_{u}(u)= \left\{         \begin{array}{*{2}{c} }         1 & \rm falls\hspace{0.3cm} 0 < {\it u} < 1,\\         0.5 & \rm falls\hspace{0.3cm}   {\it u} = 0, {\it u} = 1,\\          0 & \rm sonst, \\              \end{array}    \right. \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
+
:$$f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm if\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm if\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\ 0 & \rm else, \end{array}    \right. \hspace{0.5cm}\rightarrow \hspace{0.5cm}
  f_{x}(x)= \left\{         \begin{array}{*{2}{c} }        \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm falls\hspace{0.3cm}   {\it x} > 0,\\        \lambda/2 & \rm falls\hspace{0.3cm} {\it x} = 0 ,\\          0 & \rm falls\hspace{0.3cm} {\it x} < 0. \\              \end{array}    \right.$$}}
+
  f_{x}(x)= \left\{ \begin{array}{*{2}{c} }        \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm if\hspace{0.3cm} {\it x} > 0,\ \lambda/2 & \rm if\hspace{0.3cm} {\it x} = 0 ,\ 0 & \rm if\hspace{0.3cm} {\it x} < 0. \ \end{array}    \right.$$}}
  
  
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
$\text{Problemlösung:}$&nbsp;  
+
$\text{Solution:}$&nbsp;  
  
'''(1)'''&nbsp; Ausgehend von der allgemeinen Transformationsgleichung
+
'''(1)'''&nbsp; Starting from the general transformation equation.
 
:$$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$
 
:$$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$
erhält man durch Umstellen und Einsetzen der vorgegebenen PDF $f_{ x}(x):$
+
is obtained by converting and substituting the given PDF $f_{ x}(x):$
 
:$$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$  
 
:$$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$  
Hierbei gibt&nbsp; $x = g\hspace{0.05cm}'(u)$&nbsp; die Ableitung der Kennlinie an, die wir als monoton steigend voraussetzen.  
+
Here&nbsp; $x = g\hspace{0.05cm}'(u)$&nbsp; gives the derivative of the characteristic curve, which we assume to be monotonically increasing.  
  
'''(2)'''&nbsp; Mit dieser Annahme erhält man &nbsp;$\vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u$&nbsp; und die Differentialgleichung &nbsp;${\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x$&nbsp; mit der Lösung &nbsp;$u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$
+
'''(2)'''&nbsp; With this assumption we get &nbsp;$\vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u$&nbsp; and the differential equation &nbsp;${\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0. 05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x$&nbsp; with solution &nbsp;$u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$
  
'''(3)'''&nbsp; Aus der Bedingung, dass die Eingangsgröße &nbsp;$u =0$&nbsp; zum Ausgangswert &nbsp;$x =0$&nbsp; führen soll, erhält man für die Konstante&nbsp; $K =1$&nbsp; und damit &nbsp;$u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$
+
'''(3)'''&nbsp; From the condition that the input quantity &nbsp;$u =0$&nbsp; should lead to the output value &nbsp;$x =0$&nbsp;, we obtain for the constant&nbsp; $K =1$&nbsp; and thus &nbsp;$u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$
  
'''(4)'''&nbsp; Löst man diese Gleichung nach&nbsp; $x$&nbsp; auf, so ergibt sich die vorne angegebene Gleichung:  
+
'''(4)'''&nbsp; Solving this equation for&nbsp; $x$&nbsp; yields the equation given in front:  
 
:$$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$
 
:$$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$
  
*Bei einer Rechnerimplementierung ist allerdings sicherzustellen, dass für die gleichverteilte Eingangsgröße&nbsp; $u$&nbsp; der kritische Wert&nbsp; $1$&nbsp; ausgeschlossen wird.&nbsp;  
+
*In a computer implementation, however, ensure that the critical value&nbsp; $1$&nbsp; is excluded for the equally distributed input variable&nbsp; $u$&nbsp; &nbsp;  
*Dies wirkt sich jedoch auf das Endergebnis (fast) nicht aus. }}
+
*This, however, has (almost) no effect on the final result. }}
  
  
 
==Two-sided exponential distribution - Laplace distribution==
 
==Two-sided exponential distribution - Laplace distribution==
 
<br>
 
<br>
In engem Zusammenhang mit der Exponentialverteilung steht die sogenannte&nbsp; [https://de.wikipedia.org/wiki/Laplaceverteilung Laplaceverteilung]&nbsp; mit der Wahrscheinlichkeitsdichtefunktion
+
Closely related to the exponential distribution is the so-called&nbsp; [https://en.wikipedia.org/wiki/Laplace_distribution Laplace distrubtion]&nbsp; with the probability density function
 
:$$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$
 
:$$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$
  
Die Laplaceverteilung ist eine&nbsp; ''zweiseitige Exponentialverteilung'', die insbesondere die Amplitudenverteilung von Sprach&ndash; und Musiksignalen ausreichend gut approximiert.  
+
The Laplace distribution is a&nbsp; ''two-sided exponential distribution'' that approximates sufficiently well, in particular, the amplitude distribution of speech&ndash; and music signals.  
* Die Momente&nbsp; $k$&ndash;ter Ordnung &nbsp; &rArr; &nbsp; $m_k$&nbsp; der Laplaceverteilung stimmen für geradzahliges&nbsp; $k$&nbsp; mit denen der Exponentialverteilung überein.
+
* The moments&nbsp; $k$&ndash;th order &nbsp; &rArr; &nbsp; $m_k$&nbsp; of the Laplace distribution agree with those of the exponential distribution for even&nbsp; $k$&nbsp; .
* Für ungeradzahliges&nbsp; $k$&nbsp; ergibt sich bei der (symmetrischen) Laplaceverteilung dagegen  stets&nbsp; $m_k= 0$.
+
* For odd&nbsp; $k$&nbsp; on the other hand, the (symmetric) Laplace distribution always yields&nbsp; $m_k= 0$.
  
  
Zur Generierung verwendet man eine zwischen&nbsp; $±1$&nbsp; gleichverteilte Zufallsgröße&nbsp; $v$&nbsp; (wobei&nbsp; $v = 0$&nbsp; ausgeschlossen werden muss)&nbsp; und die Transformationskennlinie
+
For generation one uses a between&nbsp; $±1$&nbsp; equally distributed random variable&nbsp; $v$&nbsp; (where&nbsp; $v = 0$&nbsp; must be excluded)&nbsp; and the transformation characteristic curve
 
:$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$
 
:$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$
  
  
''Weitere Hinweise:''
+
Further notes:
*Aus der&nbsp; [[Aufgaben:3.8_Verstärkung_und_Begrenzung| Aufgabe 3.8]]&nbsp; erkennt man weitere Eigenschaften der Laplaceverteilung.
+
*From the&nbsp; [[Aufgaben:Exercise_3.8:_Amplification_and_Limitation| Exercise 3.8]]&nbsp; one can see further properties of the Laplace distribution.
  
*Im Lernvideo&nbsp; [[Wahrscheinlichkeit_und_WDF_(Lernvideo)|Wahrscheinlichkeit und WDF]]&nbsp; wird gezeigt, welche Bedeutung  die Laplaceverteilung für die Beschreibung von Sprach&ndash; und Musiksignalen hat.
+
*In the (German) learning video&nbsp; [[Wahrscheinlichkeit_und_WDF_(Lernvideo)|Wahrscheinlichkeit und WDF]]&nbsp; $\Rightarrow$ Probability and PDF, it is shown which meaning the Laplace distribution has for the description of speech&ndash; and music signals.
*Mit dem Applet&nbsp; [[Applets:WDF,_VTF_und_Momente_spezieller_Verteilungen_(Applet)|WDF, VTF und Momente]]&nbsp; können Sie sich die Kenngrößen&nbsp; $($WDF, VTF, Momente$)$&nbsp; von Exponential- und Laplaceverteilung anzeigen lassen.
+
*With the applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|PDF, CDF and Moments]]&nbsp; you can display the characteristics&nbsp; $($PDF, CDF, Moments$)$&nbsp; of exponential and Laplace distributions.
*Wir weisen Sie auch auf das Applet&nbsp; [[Applets:Zweidimensionale_Laplace-Zufallsgrößen_(Applet)|Zweidimensionale Laplace-Zufallsgrößen]]&nbsp; hin.
+
*We also refer you to the applet&nbsp; [[Applets:Zweidimensionale_Laplace-Zufallsgrößen_(Applet)|Two-dimensional Laplace random quantities]]&nbsp;.
 
    
 
    
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
 
[[Aufgaben:3.8 Verstärkung und Begrenzung|Aufgabe 3.8: Verstärkung und Begrenzung]]
 
[[Aufgaben:3.8 Verstärkung und Begrenzung|Aufgabe 3.8: Verstärkung und Begrenzung]]

Revision as of 00:08, 4 January 2022

One-sided exponential distribution


$\text{Definition:}$  A continuous random variable  $x$  is called (one-sided)  exponentially distributed if it can take only non–negative values and the PDF for  $x>0$  has the following shape:

$$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$


PDF and CDF of an exponentially distributed random variable

The left image shows the  probability density function  (PDF) of such an exponentially distributed random variable  $x$.  Highlight:

  • The larger the distribution parameter  $λ$  is, the steeper the decay occurs.
  • By definition  $f_{x}(0) = λ/2$, i.e. the mean of left-hand limit  $(0)$  and right-hand limit  $(\lambda)$.


For the  cumulative distribution function  (right graph), we obtain for  $r > 0$  by integration over the PDF:

$$F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$

The  moments  of the one-sided exponential distribution are generally equal to  

$$m_k = k!/λ^k.$$

From this and from Steiner's theorem, we get for the mean and the dispersion:

$$m_1={1}/{\lambda},$$
$$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.$$

$\text{Example 1:}$  The exponential distribution has great importance for reliability studies, and the term "lifetime distribution" is also commonly used in this context.

  • In these applications, the random variable is often the time  $t$ that elapses before a component fails.
  • Furthermore, it should be noted that the exponential distribution is closely related to the  Poisson distribution .

Transformation of random variables


To generate such an exponentially distributed random variable on a digital computer, for example, a  nonlinear transformation  The underlying principle is first stated here in general terms.

$\text{Procedure:}$  If a continuous random variable  $u$  possesses the PDF  $f_{u}(u)$, then the probability density function of the random variable transformed at the nonlinear characteristic  $x = g(u)$  $x$ holds:

$$f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.$$

Here  $g\hspace{0.05cm}'(u)$  denotes the derivative of the characteristic curve  $g(u)$  and  $h(x)$  gives the inverse function to  $g(u)$  .


  • The above equation is valid, however, only under the condition that the derivative  $g\hspace{0.03cm}'(u) \ne 0$  .
  • For a characteristic with horizontal sections  $(g\hspace{0.05cm}'(u) = 0)$  additional Dirac functions appear in the PDF if the input quantity has components in the range.
  • The weights of these Dirac functions are equal to the probabilities that the input quantity lies in these domains.


To transform random variables

$\text{Example 2:}$  Given a random variable distributed between  $-2$  and  $+2$  triangularly  $u$  on a nonlinearity with characteristic  $x = g(u)$,

  • which, in the range  $\vert u \vert ≤ 1$  triples the input values,  and
  • mapping all values  $\vert u \vert > 1$  to  $x = \pm 3$  depending on the sign,


then the PDF $f_{x}(x)$ sketched on the right is obtained.


Please note:

(1)   Due to the amplification by a factor of  $3$  $f_{x}(x)$  is wider and lower than $f_{u}(u) by this factor.$

(2)   The two horizontal limits of the characteristic at  $u = ±1$  lead to the two Dirac functions at  $x = ±3$, each with weight  $1/8$.

(3)   The weight  $1/8$  corresponds to the green areas in the PDF $f_{u}(u).$

Generation of an exponentially distributed random variable


$\text{procedure:}$  Now we assume that the random variable to be transformed  $u$  is uniformly distributed between  $0$  (inclusive) and  $1$  (exclusive).  Moreover, we consider the monotonically increasing characteristic curve

$$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$

It can be shown that by this characteristic  $x=g_1(u)$  a one-sided exponentially distributed random variable  $x$  with the following PDF arises 
(derivation see next page):

$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\it x}>0.$$
  • For  $x = 0$  the PDF value is half  $(\lambda/2)$.
  • Negative  $x$ values do not occur because for  $0 ≤ u < 1$  the argument of the (natural) logarithm function does not become smaller than  $1$.


By the way, the same PDF is obtained with the monotonically decreasing characteristic curve

$$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$

Please note:

  • When using a computer implementation corresponding to the first transformation characteristic  $x=g_1(u)$  the value  $u = 1$  must be excluded.
  • If one uses the second transformation characteristic  $x=g_2(u)$, on the other hand, the value  $u =0$  must be excluded.


The (German) learning video  Erzeugung einer Exponentialverteilung  $\Rightarrow$ Generation of an exponential distribution, shall clarify the transformations derived here.

Derivation of the corresponding transformation characteristic


$\text{Exercise:}$  Now derive the transformation characteristic  $x = g_1(u)= g(u)$  already used on the last page, which is derived from a random variable  equally distributed between  $0$  and  $1$  ; $u$  with the probability density function (PDF)  $f_{u}(u)$  forms a one-sided exponentially distributed random variable  $x$  with the PDF  $f_{x}(x)$  :

$$f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm if\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm if\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\ 0 & \rm else, \end{array} \right. \hspace{0.5cm}\rightarrow \hspace{0.5cm} f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm if\hspace{0.3cm} {\it x} > 0,\ \lambda/2 & \rm if\hspace{0.3cm} {\it x} = 0 ,\ 0 & \rm if\hspace{0.3cm} {\it x} < 0. \ \end{array} \right.$$


$\text{Solution:}$ 

(1)  Starting from the general transformation equation.

$$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$

is obtained by converting and substituting the given PDF $f_{ x}(x):$

$$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$

Here  $x = g\hspace{0.05cm}'(u)$  gives the derivative of the characteristic curve, which we assume to be monotonically increasing.

(2)  With this assumption we get  $\vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u$  and the differential equation  ${\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0. 05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x$  with solution  $u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$

(3)  From the condition that the input quantity  $u =0$  should lead to the output value  $x =0$ , we obtain for the constant  $K =1$  and thus  $u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$

(4)  Solving this equation for  $x$  yields the equation given in front:

$$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$
  • In a computer implementation, however, ensure that the critical value  $1$  is excluded for the equally distributed input variable  $u$   
  • This, however, has (almost) no effect on the final result.


Two-sided exponential distribution - Laplace distribution


Closely related to the exponential distribution is the so-called  Laplace distrubtion  with the probability density function

$$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$

The Laplace distribution is a  two-sided exponential distribution that approximates sufficiently well, in particular, the amplitude distribution of speech– and music signals.

  • The moments  $k$–th order   ⇒   $m_k$  of the Laplace distribution agree with those of the exponential distribution for even  $k$  .
  • For odd  $k$  on the other hand, the (symmetric) Laplace distribution always yields  $m_k= 0$.


For generation one uses a between  $±1$  equally distributed random variable  $v$  (where  $v = 0$  must be excluded)  and the transformation characteristic curve

$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$


Further notes:

  • From the  Exercise 3.8  one can see further properties of the Laplace distribution.


Exercises for the chapter


Aufgabe 3.8: Verstärkung und Begrenzung

Aufgabe 3.8Z: Kreis(ring)fläche

Aufgabe 3.9: Kennlinie für Cosinus-WDF

Aufgabe 3.9Z: Sinustransformation