Difference between revisions of "Theory of Stochastic Signals/Statistical Dependence and Independence"

From LNTwww
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Wahrscheinlichkeitsrechnung
+
|Untermenü=Probability Calculation
|Vorherige Seite=Mengentheoretische Grundlagen
+
|Vorherige Seite=Set Theory Basics
|Nächste Seite=Markovketten
+
|Nächste Seite=Markov Chains
 
}}
 
}}
  
==Allgemeine Definition von statistischer Abhängigkeit==
+
==General Definition of Statistical Dependence==
 
<br>
 
<br>
Bisher haben wir die&nbsp; ''statistische Abhängigkeit''&nbsp; zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen bereits verwendet haben: &nbsp; Gehört ein Element zu&nbsp; $A$, so kann es mit Sicherheit nicht auch in der disjunkten Menge&nbsp; $B$&nbsp; enthalten sein.  
+
So far we have not paid much attention to&nbsp; ''statistical dependence''&nbsp; between events, even though we have already used it as in the case of two disjoint sets: &nbsp; If an element belongs to&nbsp; $A$, it cannot with certainty also be contained in the disjoint set&nbsp; $B$&nbsp;.
  
Die stärkste Form von Abhängigkeit überhaupt ist eine solche&nbsp; '''deterministische Abhängigkeit'''&nbsp; zwischen zwei Mengen bzw. zwei Ereignissen.&nbsp; Weniger ausgeprägt ist die statistische Abhängigkeit. Beginnen wir mit deren Komplement:
+
The strongest form of dependence at all is such a&nbsp; '''deterministic dependence'''&nbsp; between two sets or two events.&nbsp; Less pronounced is the statistical dependence. Let us start with its complement:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Zwei Ereignisse&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; bezeichnet man dann als&nbsp; '''statistisch unabhängig'''&nbsp; (englisch:&nbsp; ''statistical independent''&nbsp;), wenn die Wahrscheinlichkeit der Schnittmenge&nbsp; $A ∩ B$&nbsp; gleich dem Produkt der Einzelwahrscheinlichkeiten ist:
+
Two events&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; are called&nbsp; '''statistically independent'''&nbsp;, if the probability of the intersection&nbsp; $A ∩ B$&nbsp; is equal to the product of the individual probabilities:
 
:$${\rm Pr}(A \cap B) = {\rm Pr}(A)\cdot {\rm Pr}(B).$$}}
 
:$${\rm Pr}(A \cap B) = {\rm Pr}(A)\cdot {\rm Pr}(B).$$}}
  
  
*In manchen Anwendungsfällen ist die statistische Unabhängigkeit offensichtlich, zum Beispiel beim Experiment "Münzwurf". Die Wahrscheinlichkeit für "Zahl" oder "Bild" ist unabhängig davon, ob beim letzten Wurf&nbsp; ''Zahl''&nbsp; oder&nbsp; ''Bild''&nbsp; aufgetreten ist.  
+
*In some applications, statistical independence is obvious, for example, in the "coin toss" experiment. The probability for "heads" or "tails" is independent of whether&nbsp; ''heads''&nbsp; oder&nbsp; ''tails''&nbsp; occurred in the last toss.
  
*Und auch die einzelnen Ergebnisse beim Zufallsexperiment "Werfen einer Roulettekugel" sind bei fairen Bedingungen stets statistisch unabhängig voneinander, auch wenn einzelne Systemspieler dies nicht wahrhaben wollen.  
+
*And also the individual results in the random experiment "throwing a roulette ball" are always statistically independent of each other under fair conditions, even if individual system players do not want to admit this.
  
*Bei anderen Anwendungen ist dagegen die Frage, ob zwei Ereignisse statistisch unabhängig sind oder nicht, gefühlsmäßig nicht oder nur sehr schwer zu beantworten.&nbsp; Hier kann man nur durch Überprüfung des oben angegebenen formalen Unabhängigkeitskriteriums zur richtigen Antwort kommen, wie das folgende Beispiel zeigen soll.
+
*In other applications, on the other hand, the question whether two events are statistically independent or not is not or only very difficult to answer instinctively.&nbsp; Here one can only arrive at the correct answer by checking the formal independence criterion given above, as the following example will show.
  
  
[[File:EN_Sto_T_1_3_S1.png|right|frame| Beispiele für statistisch unabhängige Ereignisse]]
+
[[File:EN_Sto_T_1_3_S1.png|right|frame| Examples for statistically independent events]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
Wir betrachten wieder das Zufallsexperiment "Werfen mit zwei Würfeln", wobei die beiden Würfel an ihren Farben Rot&nbsp; $(R)$&nbsp; und Blau&nbsp; $(B)$&nbsp; unterschieden werden können.  
+
We consider the experiment  "throwing two dice", where the two dice can be distinguished by their colors red&nbsp; $(R)$&nbsp; and blue&nbsp; $(B)$&nbsp;.
  
Die Grafik verdeutlicht diesen Sachverhalt, wobei in dem zweidimensionalen Feld&nbsp; $(R, B)$&nbsp; die Summe&nbsp; $S = R + B$&nbsp; eingetragen ist.
+
The graph illustrates this fact, where the sum&nbsp; $S = R + B$&nbsp; is entered in the two-dimensional field&nbsp; $(R, B)$&nbsp;.
  
Für die folgende Beschreibung definieren wir folgende Ereignisse:
+
For the following description we define the following events:
*$A_1$:&nbsp; Die Augenzahl des roten Würfels ist&nbsp; $R < 4$&nbsp; (rote Hinterlegung) &nbsp; &rArr; &nbsp; ${\rm Pr}(A_1) = 1/2$,
+
*$A_1$:&nbsp; The number of eyes of the red die is&nbsp; $R < 4$&nbsp; (red background) &nbsp; &rArr; &nbsp; ${\rm Pr}(A_1) = 1/2$,
*$A_2$:&nbsp; Die Augenzahl des blauen Würfels ist&nbsp; $B > 4$&nbsp; (blaue Schrift) &nbsp; &rArr; &nbsp; ${\rm Pr}(A_2) = 1/3$,
+
*$A_2$:&nbsp; The number of eyes of the blue die is&nbsp; $B > 4$&nbsp; (blaue Schrift) &nbsp; &rArr; &nbsp; ${\rm Pr}(A_2) = 1/3$,
*$A_3$:&nbsp; Die Summe der beiden Würfel ist&nbsp; $S = 7$&nbsp; (grüne Umrahmung) &nbsp; &rArr; &nbsp; ${\rm Pr}(A_3) = 1/6$,
+
*$A_3$:&nbsp; The sum of the two dice&nbsp; $S = 7$&nbsp; (grüne Umrahmung) &nbsp; &rArr; &nbsp; ${\rm Pr}(A_3) = 1/6$,
*$A_4$:&nbsp; Die Summe der beiden Würfel ist&nbsp; $S = 8$&nbsp;  &nbsp; &rArr; &nbsp; ${\rm Pr}(A_4) = 5/36$,
+
*$A_4$:&nbsp; The sum of the two dice&nbsp; $S = 8$&nbsp;  &nbsp; &rArr; &nbsp; ${\rm Pr}(A_4) = 5/36$,
*$A_5$:&nbsp; Die Summe der beiden Würfel ist&nbsp; $S = 10$&nbsp;  &nbsp; &rArr; &nbsp; ${\rm Pr}(A_5) = 3/36$.
+
*$A_5$:&nbsp; The sum of the two dice&nbsp; $S = 10$&nbsp;  &nbsp; &rArr; &nbsp; ${\rm Pr}(A_5) = 3/36$.
 
<br clear=all>
 
<br clear=all>
Die Grafik kann wie folgt interpretiert werden:  
+
The graph can be interpreted as follows:
 
*Die beiden Ereignisse&nbsp; $A_1$&nbsp; und&nbsp; $A_2$&nbsp; sind statistisch unabhängig, da die Wahrscheinlichkeit&nbsp; ${\rm Pr}(A_1 ∩ A_2) = 1/6$&nbsp; der Schnittmenge gleich dem Produkt der beiden Einzelwahrscheinlichkeiten&nbsp; ${\rm Pr}(A_1) = 1/2$&nbsp; und&nbsp; ${\rm Pr}(A_2) = 1/3$&nbsp; ist.&nbsp; Aufgrund der Aufgabenstellung hätte auch jedes andere Ergebnis sehr überrascht.  
 
*Die beiden Ereignisse&nbsp; $A_1$&nbsp; und&nbsp; $A_2$&nbsp; sind statistisch unabhängig, da die Wahrscheinlichkeit&nbsp; ${\rm Pr}(A_1 ∩ A_2) = 1/6$&nbsp; der Schnittmenge gleich dem Produkt der beiden Einzelwahrscheinlichkeiten&nbsp; ${\rm Pr}(A_1) = 1/2$&nbsp; und&nbsp; ${\rm Pr}(A_2) = 1/3$&nbsp; ist.&nbsp; Aufgrund der Aufgabenstellung hätte auch jedes andere Ergebnis sehr überrascht.  
 
*Aber auch die Ereignisse&nbsp; $A_1$&nbsp; und&nbsp; $A_3$&nbsp;  sind wegen&nbsp; ${\rm Pr}(A_1) = 1/2$,&nbsp; ${\rm Pr}(A_3) = 1/6$&nbsp; und&nbsp; ${\rm Pr}(A_1 ∩ A_3) = 1/12$&nbsp; statistisch unabhängig.&nbsp; Die Wahrscheinlichkeit der Schnittmenge&nbsp; $(1/12)$&nbsp; ergibt sich, weil drei der&nbsp; $36$&nbsp; Felder sowohl rot hinterlegt als auch grün umrandet sind.
 
*Aber auch die Ereignisse&nbsp; $A_1$&nbsp; und&nbsp; $A_3$&nbsp;  sind wegen&nbsp; ${\rm Pr}(A_1) = 1/2$,&nbsp; ${\rm Pr}(A_3) = 1/6$&nbsp; und&nbsp; ${\rm Pr}(A_1 ∩ A_3) = 1/12$&nbsp; statistisch unabhängig.&nbsp; Die Wahrscheinlichkeit der Schnittmenge&nbsp; $(1/12)$&nbsp; ergibt sich, weil drei der&nbsp; $36$&nbsp; Felder sowohl rot hinterlegt als auch grün umrandet sind.

Revision as of 16:26, 25 November 2021

General Definition of Statistical Dependence


So far we have not paid much attention to  statistical dependence  between events, even though we have already used it as in the case of two disjoint sets:   If an element belongs to  $A$, it cannot with certainty also be contained in the disjoint set  $B$ .

The strongest form of dependence at all is such a  deterministic dependence  between two sets or two events.  Less pronounced is the statistical dependence. Let us start with its complement:

$\text{Definition:}$  Two events  $A$  and  $B$  are called  statistically independent , if the probability of the intersection  $A ∩ B$  is equal to the product of the individual probabilities:

$${\rm Pr}(A \cap B) = {\rm Pr}(A)\cdot {\rm Pr}(B).$$


  • In some applications, statistical independence is obvious, for example, in the "coin toss" experiment. The probability for "heads" or "tails" is independent of whether  heads  oder  tails  occurred in the last toss.
  • And also the individual results in the random experiment "throwing a roulette ball" are always statistically independent of each other under fair conditions, even if individual system players do not want to admit this.
  • In other applications, on the other hand, the question whether two events are statistically independent or not is not or only very difficult to answer instinctively.  Here one can only arrive at the correct answer by checking the formal independence criterion given above, as the following example will show.


Examples for statistically independent events

$\text{Example 1:}$  We consider the experiment "throwing two dice", where the two dice can be distinguished by their colors red  $(R)$  and blue  $(B)$ .

The graph illustrates this fact, where the sum  $S = R + B$  is entered in the two-dimensional field  $(R, B)$ .

For the following description we define the following events:

  • $A_1$:  The number of eyes of the red die is  $R < 4$  (red background)   ⇒   ${\rm Pr}(A_1) = 1/2$,
  • $A_2$:  The number of eyes of the blue die is  $B > 4$  (blaue Schrift)   ⇒   ${\rm Pr}(A_2) = 1/3$,
  • $A_3$:  The sum of the two dice  $S = 7$  (grüne Umrahmung)   ⇒   ${\rm Pr}(A_3) = 1/6$,
  • $A_4$:  The sum of the two dice  $S = 8$    ⇒   ${\rm Pr}(A_4) = 5/36$,
  • $A_5$:  The sum of the two dice  $S = 10$    ⇒   ${\rm Pr}(A_5) = 3/36$.


The graph can be interpreted as follows:

  • Die beiden Ereignisse  $A_1$  und  $A_2$  sind statistisch unabhängig, da die Wahrscheinlichkeit  ${\rm Pr}(A_1 ∩ A_2) = 1/6$  der Schnittmenge gleich dem Produkt der beiden Einzelwahrscheinlichkeiten  ${\rm Pr}(A_1) = 1/2$  und  ${\rm Pr}(A_2) = 1/3$  ist.  Aufgrund der Aufgabenstellung hätte auch jedes andere Ergebnis sehr überrascht.
  • Aber auch die Ereignisse  $A_1$  und  $A_3$  sind wegen  ${\rm Pr}(A_1) = 1/2$,  ${\rm Pr}(A_3) = 1/6$  und  ${\rm Pr}(A_1 ∩ A_3) = 1/12$  statistisch unabhängig.  Die Wahrscheinlichkeit der Schnittmenge  $(1/12)$  ergibt sich, weil drei der  $36$  Felder sowohl rot hinterlegt als auch grün umrandet sind.
  • Dagegen bestehen zwischen den Ereignissen  $A_1$  und  $A_4$  statistische Bindungen, da die Wahrscheinlichkeit der Schnittmenge   ⇒   ${\rm Pr}(A_1 ∩ A_4) = 1/18 = 4/72$  ungleich dem Produkt  ${\rm Pr}(A_1) \cdot {\rm Pr}(A_4)= 1/2 \cdot 5/36 = 5/72$  ist.
  • Die beiden Ereignisse  $A_1$  und  $A_5$  sind sogar disjunkt   ⇒   ${\rm Pr}(A_1 ∩ A_5) = 0$:   Keines der rot hinterlegten Felder ist mit  $S=10$  beschriftet. Dieses Beispiel zeigt, dass Disjunktivität eine besonders ausgeprägte Form von statistischer Abhängigkeit ist.

Conditional Probability


Bestehen zwischen den beiden Ereignissen  $A$  und  $B$  statistische Bindungen, so ist durch die (unbedingten) Wahrscheinlichkeiten  ${\rm Pr}(A)$  und  ${\rm Pr}(B)$  der Sachverhalt im statistischen Sinne nicht eindeutig beschrieben.  Man benötigt dann noch so genannte bedingte Wahrscheinlichkeiten.

$\text{Definitionen:}$  Die  bedingte Wahrscheinlichkeit  (englisch:  Conditional Probability)  von  $A$  unter der Bedingung  $B$  ist wie folgt berechenbar:

$${\rm Pr}(A\hspace{0.05cm} \vert \hspace{0.05cm} B) = \frac{ {\rm Pr}(A \cap B)}{ {\rm Pr}(B)}.$$

In gleicher Weise gilt für die bedingte Wahrscheinlichkeit von  $B$  unter der Bedingung  $A$:

$${\rm Pr}(B\hspace{0.05cm} \vert \hspace{0.05cm}A) = \frac{ {\rm Pr}(A \cap B)}{ {\rm Pr}(A)}.$$

Verknüpft man diese beiden Gleichungen, so ergibt sich der Satz von  Bayes:

$${\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm} A) = \frac{ {\rm Pr}(A\hspace{0.05cm} \vert \hspace{0.05cm} B)\cdot {\rm Pr}(B)}{ {\rm Pr}(A)}.$$


Nachfolgend sind einige Eigenschaften von bedingten Wahrscheinlichkeiten zusammengestellt:

  • Auch eine bedingte Wahrscheinlichkeit liegt stets zwischen  $0$  und  $1$  einschließlich dieser beiden Grenzen:   $0 \le {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \le 1$.
  • Kann die Bedingung  $B$  als konstant angesehen werden, so gelten alle im Kapitel  Mengentheoretische Grundlagen  für die unbedingten Wahrscheinlichkeiten  ${\rm Pr}(A)$  und  ${\rm Pr}(B)$  angegebenen Rechenregeln weiterhin.
  • Sind die existierenden Ereignisse  $A$  und  $B$  disjunkt, so ist  ${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm} B) = {\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}A)= 0$.
  • Ist  $B$  eine echte oder unechte Teilmenge von  $A$, so ist  ${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) =1$.  
  • Sind zwei Ereignisse  $A$  und  $B$ statistisch voneinander unabhängig, so sind deren bedingte Wahrscheinlichkeiten gleich den unbedingten, wie folgende Rechnung zeigt:
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) = \frac{{\rm Pr}(A \cap B)}{{\rm Pr}(B)} = \frac{{\rm Pr} ( A) \cdot {\rm Pr} ( B)} { {\rm Pr}(B)} = {\rm Pr} ( A).$$
Beispiel für statistisch abhängige Ereignisse

$\text{Beispiel 2:}$  Wir betrachten wieder das Zufallsexperiment "Werfen mit zwei Würfeln", wobei wie im  $\text{Beispiel 1}$  $S = R + B$  die Summe des roten und des blauen Würfels bezeichnet.

Wir betrachten hier Bindungen zwischen den beiden Ereignissen

  • $A_1$:  Die Augenzahl des roten Würfels ist  $R < 4$  (rote Hinterlegung)   ⇒   ${\rm Pr}(A_1) = 1/2$,
  • $A_4$:  Die Summe der beiden Würfel ist  $S = 8$  (grüne Umrahmung)   ⇒   ${\rm Pr}(A_4) = 5/36$,


und nehmen nochmals Bezug auf das Ereignis

  • $A_3$:  Die Summe der beiden Würfel ist  $S = 7$   ⇒   ${\rm Pr}(A_3) = 1/6$.


Zu dieser Grafik ist anzumerken:

  • Zwischen den Ereignissen  $A_1$  und  $A_4$  bestehen statistische Bindungen, da die Wahrscheinlichkeit der Schnittmenge   ⇒   ${\rm Pr}(A_1 ∩ A_4) = 2/36 = 4/72$  ungleich dem Produkt  ${\rm Pr}(A_1) \cdot {\rm Pr}(A_4)= 1/2 \cdot 5/36 = 5/72$  ist.
  • Die bedingte Wahrscheinlichkeit  ${\rm Pr}(A_1 \hspace{0.05cm} \vert \hspace{0.05cm} A_4) = 2/5$  kann aus dem Quotienten der Verbundwahrscheinlichkeit  ${\rm Pr}(A_1 ∩ A_4) = 2/36$  und der Wahrscheinlichkeit  ${\rm Pr}(A_4) = 5/36$  berechnet werden.
  • Da  $A_1$  und  $A_4$  statistisch abhängig sind, ist die bedingte Wahrscheinlichkeit  ${\rm Pr}(A_1 \hspace{0.05cm}\vert \hspace{0.05cm} A_4) = 2/5$  (zwei der fünf grün umrandeten Felder sind rot hinterlegt)  ungleich der absoluten Wahrscheinlichkeit  ${\rm Pr}(A_1) = 1/2$  (die Hälfte aller Felder sind rot hinterlegt).
  • Ebenso ist die bedingte Wahrscheinlichkeit  ${\rm Pr}(A_4 \hspace{0.05cm} \vert \hspace{0.05cm} A_1) = 2/18 = 4/36$  (zwei der  $18$  rot hinterlegten Felder sind grün umrandet) ungleich der absoluten Wahrscheinlichkeit  ${\rm Pr}(A_4) = 5/36$  (insgesamt sind fünf der  $36$  Felder grün umrandet).
  • Dieses letzte Ergebnis lässt sich zum Beispiel auch über den  Satz von Bayes  ableiten:
$${\rm Pr}(A_4 \hspace{0.05cm} \vert\hspace{0.05cm} A_1) = \frac{ {\rm Pr}(A_1 \hspace{0.05cm} \vert\hspace{0.05cm} A_4)\cdot {\rm Pr} ( A_4)} { {\rm Pr}(A_1)} = \frac{2/5 \cdot 5/36}{1/2} = 1/9.$$
  • Dagegen gelten für  $A_1$  und das hierzu statistisch unabhängige Ereignis  $A_3$  die folgenden bedingten Wahrscheinlichkeiten, siehe  Beispiel 1:
$${\rm Pr}(A_{\rm 1} \hspace{0.05cm}\vert \hspace{0.05cm} A_{\rm 3}) = {\rm Pr}(A_{\rm 1}) = \rm 1/2\hspace{0.5cm}{\rm bzw.}\hspace{0.5cm}{\rm Pr}(A_{\rm 3} \hspace{0.05cm} \vert \hspace{0.05cm} A_{\rm 1}) = {\rm Pr}(A_{\rm 3}) = 1/6.$$


Allgemeines Multiplikationstheorem


Wir betrachten mehrere Ereignisse, die als  $A_i$  mit  $1 ≤ i ≤ I$  bezeichnet werden.  Diese Ereignisse  $A_i$  stellen nun aber kein  vollständiges System  mehr dar, das heißt,

  • sie sind nicht paarweise zueinander disjunkt, und
  • es können zwischen den einzelnen Ereignissen auch statistische Bindungen bestehen.


$\text{Definition:}$  Für die so genannte  Verbundwahrscheinlichkeit, also für die Wahrscheinlichkeit der Schnittmenge aller  $I$  Ereignisse  $A_i$, gilt in diesem Fall:

$${\rm Pr}(A_{\rm 1} \cap \hspace{0.02cm}\text{ ...}\hspace{0.1cm} \cap A_{I}) = {\rm Pr}(A_{I})\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm Pr}(A_{I \rm -1} \hspace{0.05cm}\vert \hspace{0.05cm} A_I) \hspace{0.05cm}\cdot \hspace{0.05cm}{\rm Pr}(A_{I \rm -2} \hspace{0.05cm}\vert\hspace{0.05cm} A_{I - \rm 1}\cap A_I)\hspace{0.05cm} \cdot \hspace{0.02cm}\text{ ...} \hspace{0.1cm} \cdot\hspace{0.05cm} {\rm Pr}(A_{\rm 1} \hspace{0.05cm}\vert \hspace{0.05cm}A_{\rm 2} \cap \hspace{0.02cm}\text{ ...} \hspace{0.1cm}\cap A_{ I}).$$

In gleicher Weise gilt natürlich auch:

$${\rm Pr}(A_{\rm 1} \cap \hspace{0.02cm}\text{ ...}\hspace{0.1cm} \cap A_{I}) = {\rm Pr}(A_1)\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm Pr}(A_2 \hspace{0.05cm}\vert \hspace{0.05cm} A_1) \hspace{0.05cm}\cdot \hspace{0.05cm}{\rm Pr}(A_3 \hspace{0.05cm}\vert \hspace{0.05cm} A_1\cap A_2)\hspace{0.05cm} \cdot \hspace{0.02cm}\text{ ...}\hspace{0.1cm} \cdot\hspace{0.05cm} {\rm Pr}(A_I \hspace{0.05cm}\vert \hspace{0.05cm}A_1 \cap \hspace{0.02cm} \text{ ...} \hspace{0.1cm}\cap A_{ I-1}).$$


$\text{Beispiel 3:}$  Eine Lostrommel enthält zehn Lose, darunter drei Treffer  $($Ereignis $T_1)$.  Dann gilt für die Wahrscheinlichkeit, dass man mit zwei Losen zwei Treffer zieht:

$${\rm Pr}(T_1 \cap T_2) = {\rm Pr}(T_1) \cdot {\rm Pr}(T_2 \hspace{0.05cm }\vert \hspace{0.05cm} T_1) = 3/10 \cdot 2/9 = 1/15 \approx 6.7 \%.$$
  • Hierbei ist berücksichtigt, dass sich bei der zweiten Ziehung  $($Ereignis $T_2)$  nur mehr neun Lose und zwei Treffer in der Urne befänden, falls im ersten Durchgang ein Treffer gezogen worden ist   ⇒   ${\rm Pr}(T_2 \hspace{0.05cm} \vert\hspace{0.05cm} T_1) = 2/9$ .
  • Würde man jedoch die Lose nach der Ziehung wieder in die Trommel zurücklegen, so wären die Ereignisse  $T_1$  und  $T_2$  statistisch unabhängig und es würde gelten:
$$ {\rm Pr}(T_1 ∩ T_2) = (3/10)^2 = 9\%.$$

Rückschlusswahrscheinlichkeit


Gegeben seien wieder Ereignisse  $A_i$  mit  $1 ≤ i ≤ I$, die ein vollständiges System bilden. Das heißt:

  • Alle Ereignisse sind paarweise disjunkt  $(A_i ∩ A_j = ϕ$  für alle  $i ≠ j$ ).
  • Die Vereinigungsmenge ergibt die Grundmenge:
$$\rm \bigcup_{\it i=1}^{\it I}\it A_i = \it G.$$

Daneben betrachten wir noch das Ereignis  $B$, von dem alle bedingten Wahrscheinlichkeiten  ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm} A_i)$  mit den Indizes  $1 ≤ i ≤ I$  bekannt sind.

$\text{Satz von der totalen Wahrscheinlichkeit:}$  Unter den oben genannten Voraussetzungen gilt für die (unbedingte) Wahrscheinlichkeit des Ereignisses  $B$:

$${\rm Pr}(B) = \sum_{i={\rm1} }^{I}{\rm Pr}(B \cap A_i) = \sum_{i={\rm1} }^{I}{\rm Pr}(B \hspace{0.05cm} \vert\hspace{0.05cm} A_i)\cdot{\rm Pr}(A_i).$$


$\text{Definition:}$  Aus dieser Gleichung folgt mit dem  Satz von Bayes  für die  Rückschlusswahrscheinlichkeit:

$${\rm Pr}(A_i \hspace{0.05cm} \vert \hspace{0.05cm} B) = \frac{ {\rm Pr}( B \mid A_i)\cdot {\rm Pr}(A_i )}{ {\rm Pr}(B)} = \frac{ {\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm} A_i)\cdot {\rm Pr}(A_i )}{\sum_{k={\rm1} }^{I}{\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm} A_k)\cdot{\rm Pr}(A_k) }.$$


$\text{Beispiel 4:}$  In Münchner Studentenheimen wohnen Studierende

  • der Ludwig–Maximilian–Universität  $($Ereignis  $L$   ⇒   ${\rm Pr}(L) = 70\%)$  und
  • der Technischen Universität München  $($Ereignis  $T$   ⇒   ${\rm Pr}(T) = 30\%)$.


Es ist weiterhin bekannt, dass an der LMU  $60\%$  aller Studierenden weiblich sind, an der TUM nur  $10\%$.

  • Der Anteil aller Studentinnen im Studentenheim  $($Ereignis $W)$  kann dann mit dem Satz von der totalen Wahrscheinlichkeit ermittelt werden:
$${\rm Pr}(W) = {\rm Pr}(W \hspace{0.05cm} \vert \hspace{0.05cm} L)\hspace{0.01cm}\cdot\hspace{0.01cm}{\rm Pr}(L) \hspace{0.05cm}+\hspace{0.05cm} {\rm Pr}(W \hspace{0.05cm} \vert \hspace{0.05cm} T)\hspace{0.01cm}\cdot\hspace{0.01cm}{\rm Pr}(T) = \rm 0.6\hspace{0.01cm}\cdot\hspace{0.01cm}0.7\hspace{0.05cm}+\hspace{0.05cm}0.1\hspace{0.01cm}\cdot \hspace{0.01cm}0.3 = 45 \%.$$
  • Trifft man eine Studentin, so kann man mit der Rückschlusswahrscheinlichkeit
$${\rm Pr}(L \hspace{-0.05cm}\mid \hspace{-0.05cm}W) = \frac{ {\rm Pr}(W \hspace{-0.05cm}\mid \hspace{-0.05cm}L)\cdot {\rm Pr}(L) }{ {\rm Pr}(W \hspace{-0.05cm}\mid \hspace{-0.05cm}L) \cdot {\rm Pr}(L) +{\rm Pr}(W \hspace{-0.05cm}\mid \hspace{-0.05cm}T) \cdot {\rm Pr}(T)}=\rm \frac{0.6\cdot 0.7}{0.6\cdot 0.7 + 0.1\cdot 0.3}=\frac{14}{15}\approx 93.3 \%$$
vorhersagen,  dass sie an der LMU studieren wird. Ein durchaus realistisches Ergebnis  (zumindest in der Vergangenheit).


Die Aussagen dieses Abschnitts sind im Lernvideo  Statistische Abhängigkeit und Unabhängigkeit  zusammengefasst.

Aufgaben zum Kapitel


Aufgabe 1.4: 2S/3E-Kanalmodell

Aufgabe 1.4Z: Summe von Ternärgrößen

Aufgabe 1.5: Karten ziehen

Aufgabe 1.5Z: Ausfallwahrscheinlichkeiten