# Discrete Fouriertransform and Inverse

## Applet Description

The conventional Fourier Transform  $\rm (FT)$  allows the calculation of the spectral function  $X(f)$  of a time continuous signal  $x(t)$.

In contrast, the Discrete Fourier Transform  $\rm (DFT)$  is limited to a time discrete signal, represented by  $N$  time domain coefficients   $d(\nu)$  with indices  $\nu = 0, \text{...} , N\hspace{-0.1cm}-\hspace{-0.1cm}1$, which can be interpreted as equidistant samples of the time continuous signal  $x(t)$.

If the  Sampling Theorem  is fulfilled, the DFT algorithm likewise allows the calculation of  $N$  frequency domain coefficients  $D(\mu)$  with indices  $\mu = 0, \text{...} , N\hspace{-0.1cm}-\hspace{-0.1cm}1$.  These are equidistant samples of the frequency continuous spectrum  $X(f)$.

• The applet illustrates the properties of the  $\text{DFT:}\hspace{0.3cm}d(\nu)\hspace{0.1cm} \Rightarrow \hspace{0.1cm} D(\mu)$  by using the example  $N=16$.  The default   $d(\nu)$–assignments for the DFT are:
(a)  According to the input field,  (b)  Constant signal,  (c)  Complex exponential function (of time),  (d)  Harmonic oscillation (with  $($Phase  $\varphi = 45^\circ)$,
(e)  Cosine signal (one period),  (f)  Sinusoidal signal (one period),  (g)  Cosine signal (two periods), (h)  Alternating time coefficients, (i)  Dirac impulse,
(j)  Rectangular impulse,  (k)  Triangular impulse,  (l)  Gaussian impulse.
• Possible  $D(\mu)$–assignments for the Inverse Discrete Fourier Transform   ⇒   $\text{IDFT:}\hspace{0.3cm}D(\mu)\hspace{0.1cm} \Rightarrow \hspace{0.1cm} d(\nu)$  are:
(A)  According to the input field,  (B)  Constant spectrum,  (C)  Complex exponential function (of frequency),  (D)  Equivalent to setting (d) in the time domain,
(E)  Cosine spectrum (one frequency period),  (F)  Sinusoidal spectrum (one frequency period),  (G)  Cosine spectrum (two frequency periods),
(H)  Alternating spectral coefficients, (I)  Dirac spectrum,  (J)  Rectangular spectrum,  (K)  Triangular spectrum,  (L)  Gaussian spectrum.

The applet uses the framework  Plot.ly.

## Theoretical Background

### Argumente für die diskrete Realisierung der Fouriertransformation

Die  Fouriertransformation  gemäß der herkömmlichen Beschreibung für zeitkontinuierliche Signale weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich hohe Selektivität auf und ist deshalb ein ideales theoretisches Hilfsmittel der Spektralanalyse.

Sollen die Spektralanteile  $X(f)$  einer Zeitfunktion  $x(t)$  numerisch ermittelt werden, so sind die allgemeinen Transformationsgleichungen

\begin{align*}X(f) & = \int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Hintransformation}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{Erstes Fourierintegral} \hspace{0.05cm},\\ x(t) & = \int_{-\infty }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm} \text{Rücktransformation}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{Zweites Fourierintegral} \hspace{0.05cm}\end{align*}

aus zwei Gründen ungeeignet:

• Die Gleichungen gelten ausschließlich für zeitkontinuierliche Signale. Mit Digitalrechnern oder Signalprozessoren kann man jedoch nur zeitdiskrete Signale verarbeiten.
• Für eine numerische Auswertung der beiden Fourierintegrale ist es erforderlich, das jeweilige Integrationsintervall auf einen endlichen Wert zu begrenzen.

$\text{Daraus ergibt sich folgende Konsequenz:}$

Ein  kontinuierliches Signal  muss vor der numerischen Bestimmung seiner Spektraleigenschaften zwei Prozesse durchlaufen, nämlich

• den der  Abtastung  zur Diskretisierung, und
• den der  Fensterung  zur Begrenzung des Integrationsintervalls.

Im Folgenden wird ausgehend von einer aperiodischen Zeitfunktion  $x(t)$  und dem dazugehörigen Fourierspektrum  $X(f)$  eine für die Rechnerverarbeitung geeignete zeit– und frequenzdiskrete Beschreibung vorgestellt.

### Zeitdiskretisierung – Periodifizierung im Frequenzbereich

Die folgenden Grafiken zeigen einheitlich links den Zeitbereich und rechts den Frequenzbereich. Ohne Einschränkung der Allgemeingültigkeit sind  $x(t)$  und  $X(f)$  jeweils reell und gaußförmig.

Diskretisierung im Zeitbereich – Periodifizierung im Frequenzbereich

Man kann die Abtastung des Zeitsignals  $x(t)$  durch die Multiplikation mit einem Diracpuls  $p_{\delta}(t)$  beschreiben. Es ergibt sich das im Abstand  $T_{\rm A}$  abgetastete Zeitsignal

$${\rm A}\{x(t)\} = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$

Dieses abgetastete Signal  $\text{A}\{ x(t)\}$  transformieren wir nun in den Frequenzbereich. Der Multiplikation des Diracpulses  $p_{\delta}(t)$  mit  $x(t)$  entspricht im Frequenzbereich die Faltung von  $P_{\delta}(f)$  mit  $X(f)$. Es ergibt sich das periodifizierte Spektrum  $\text{P}\{ X(f)\}$, wobei  $f_{\rm P}$  die Frequenzperiode der Funktion  $\text{P}\{ X(f)\}$  angibt:

$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm mit }\hspace{0.5cm}f_{\rm P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$
• Das abgetastete Signal nennen wir  $\text{A}\{ x(t)\}$.
• Die  Frequenzperiode  wird mit  $f_{\rm P}$ = $1/T_{\rm A}$  bezeichnet.

Die obige Grafik zeigt den hier beschriebenen Funktionalzusammenhang. Es ist anzumerken:

• Die Frequenzperiode  $f_{\rm P}$  wurde hier bewusst klein gewählt, so dass die Überlappung der zu summierenden Spektren deutlich zu erkennen ist.
• In der Praxis sollte  $f_{\rm P}$  aufgrund des Abtasttheorems mindestens doppelt so groß sein wie die größte im Signal  $x(t)$  enthaltene Frequenz.
• Ist dies nicht erfüllt, so muss mit  Aliasing  gerechnet werden.

### Frequenzdiskretisierung – Periodifizierung im Zeitbereich

Die Diskretisierung von  $X(f)$  lässt sich ebenfalls durch eine Multiplikation mit einem Diracpuls beschreiben. Es ergibt sich das im Abstand  $f_{\rm A}$  abgetastete Spektrum:

$${\rm A}\{X(f)\} = X(f) \cdot \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) = \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$

Transformiert man den hier verwendeten Frequenz–Diracpuls $($mit Impulsgewichten  $f_{\rm A})$  in den Zeitbereich, so erhält man mit  $T_{\rm P} = 1/f_{\rm A}$:

$$\sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$

Die Multiplikation mit  $X(f)$  entspricht im Zeitbereich der Faltung mit  $x(t)$. Man erhält das im Abstand  $T_{\rm P}$  periodifizierte Signal  $\text{P}\{ x(t)\}$:

$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} {\rm P}\{x(t)\} = x(t) \star \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } )= \sum_{\nu = - \infty }^{+\infty} x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
Diskretisierung im Frequenzbereich – Periodifizierung im Zeitbereich

$\text{Beispiel 1:}$  Dieser Zusammenhang ist in der Grafik veranschaulicht:

• Aufgrund der groben Frequenzrasterung ergibt sich in diesem Beispiel für die Zeitperiode  $T_{\rm P}$  ein relativ kleiner Wert.

• Deshalb unterscheidet sich das (blaue) periodifizierte Zeitsignal  $\text{P}\{ x(t)\}$  aufgrund von Überlappungen deutlich von  $x(t)$.

### Finite Signaldarstellung

Finite Signale der Diskreten Fouriertransformation (DFT)

Zur so genannten  finiten Signaldarstellung  kommt man,

• wenn sowohl die Zeitfunktion  $x(t)$
• als auch die Spektralfunktion  $X(f)$

ausschließlich durch ihre Abtastwerte angegeben werden.
Die Grafik ist wie folgt zu interpretieren:

• Im linken Bild blau eingezeichnet ist die Funktion  $\text{A}\{ \text{P}\{ x(t)\}\}$. Diese ergibt sich durch Abtastung der periodifizierten Zeitfunktion  $\text{P}\{ x(t)\}$  mit äquidistanten Diracimpulsen im Abstand  $T_{\rm A} = 1/f_{\rm P}$.
• Im rechten Bild grün eingezeichnet ist die Funktion  $\text{P}\{ \text{A}\{ X(f)\}\}$. Diese ergibt sich durch Periodifizierung $($mit  $f_{\rm P})$  der abgetasteten Spektralfunktion  $\{ \text{A}\{ X(f)\}\}$.
• Zwischen dem blauen finiten Signal und dem grünen finiten Signal besteht ebenfalls eine Fourierkorrespondenz, und zwar die folgende:
$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$

Die Diraclinien der periodischen Fortsetzung  $\text{P}\{ \text{A}\{ X(f)\}\}$  der abgetasteten Spektralfunktion fallen allerdings nur dann in das gleiche Frequenzraster wie diejenigen von  $\text{A}\{ X(f)\}$, wenn die Frequenzperiode  $f_{\rm P}$  ein ganzzahliges Vielfaches  $(N)$  des Frequenzabtastabstandes  $f_{\rm A}$  ist.

• Bei Anwendung der finiten Signaldarstellung muss stets die folgende Bedingung erfüllt sein, wobei für die natürliche Zahl  $N$  in der Praxis meist eine Zweierpotenz verwendet wird  (der obigen Grafik liegt der Wert  $N = 8$  zugrunde):
$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A} }= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$

Bei Einhaltung der Bedingung  $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$  ist die Reihenfolge von Periodifizierung und Abtastung vertauschbar. Somit gilt:

$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} = {\rm A}\{{\rm P}\{X(f)\}\}\hspace{0.05cm}.$$

$\text{Fazit:}$

• Die Zeitfunktion  $\text{P}\{ \text{A}\{ x(t)\}\}$  besitzt die Periode  $T_{\rm P} = N \cdot T_{\rm A}$.
• Die Periode im Frequenzbereich ist  $f_{\rm P} = N \cdot f_{\rm A}$.
• Zur Beschreibung des diskretisierten Zeit– und Frequenzverlaufs reichen somit jeweils  $N$  komplexe Zahlenwerte in Form von Impulsgewichten aus.

$\text{Beispiel 2:}$  Es liegt ein zeitbegrenztes (impulsartiges) Signal  $x(t)$  in abgetasteter Form vor, wobei der Abstand zweier Abtastwerte  $T_{\rm A} = 1\, {\rm µ s}$  beträgt:

• Nach einer diskreten Fouriertransformation mit  $N = 512$  liegt das Spektrum  $X(f)$  in Form von Abtastwerten im Abstand  $f_{\rm A} = (N \cdot T_{\rm A})^{–1} \approx 1.953\,\text{kHz}$  vor.
• Vergrößert man den DFT–Parameter auf  $N= 2048$, so ergibt sich ein feineres Frequenzraster mit  $f_{\rm A} \approx 488\,\text{Hz}$.

### Diskrete Fouriertransformation

Aus dem herkömmlichen  „ersten Fourierintegral”

$$X(f) =\int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$

entsteht durch Diskretisierung  $(\text{d}t \to T_{\rm A}$,  $t \to \nu \cdot T_{\rm A}$,  $f \to \mu \cdot f_{\rm A}$,  $T_{\rm A} \cdot f_{\rm A} = 1/N)$  die abgetastete und periodifizierte Spektralfunktion

$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1} {\rm P}\{x(\nu \cdot T_{\rm A})\}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm} \cdot \hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$

Es ist berücksichtigt, dass aufgrund der Diskretisierung jeweils die periodifizierten Funktionen einzusetzen sind.

Aus Gründen einer vereinfachten Schreibweise nehmen wir nun die folgenden Substitutionen vor:

• Die  $N$  Zeitbereichskoeffizienten  seien mit der Laufvariablen  $\nu = 0$, ... , $N - 1$:
$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
• Die  $N$  Frequenzbereichskoeffizienten  seien mit der Laufvariablen  $\mu = 0,$ ... , $N$ – 1:
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
• Abkürzend wird für den von  $N$  abhängigen  komplexen Drehfaktor  geschrieben:
$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$
Zur Definition der Diskreten Fouriertransformation (DFT) mit  $N=8$

$\text{Definition:}$

Unter dem Begriff  Diskrete Fouriertransformation  (kurz DFT)  versteht man die Berechnung der  $N$  Spektralkoeffizienten  $D(\mu)$  aus den  $N$  Signalkoeffizienten  $d(\nu)$:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

In der Grafik erkennt man an einem Beispiel

• die  $N = 8$  Signalkoeffizienten  $d(\nu)$  an der blauen Füllung,
• die  $N = 8$  Spektralkoeffizienten  $D(\mu)$  an der grünen Füllung.

### Inverse Diskrete Fouriertransformation

Die Inverse Diskrete Fouriertransformation (IDFT) beschreibt das  „zweite Fourierintegral”

\begin{align*}x(t) & = \int_{-\infty }^{+\infty}X(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm} {\rm d}f\end{align*}

in diskretisierter Form:   $d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.01cm}.$

Zur Definition der IDFT mit  $N=8$

$\text{Definition:}$

Unter dem Begriff  Inverse Diskrete Fouriertransformation  (kurz IDFT)  versteht man die Berechnung der Signalkoeffizienten  $d(\nu)$  aus den Spektralkoeffizienten  $D(\mu)$:

$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

Mit den Laufvariablen  $\nu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$  und  $\mu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$  gilt auch hier:

$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A} }\hspace{0.01cm},$$
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big \vert}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A} } \hspace{0.01cm},$$
$$w = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} \hspace{0.01cm}.$$

Ein Vergleich zwischen DFT und IDFT zeigt, dass genau der gleiche Algorithmus verwendet werden kann. Die einzigen Unterschiede der IDFT gegenüber der DFT sind:

• Der Exponent des Drehfaktors ist mit unterschiedlichem Vorzeichen anzusetzen.
• Bei der IDFT entfällt die Division durch  $N$.

### Interpretation von DFT und IDFT

Die Grafik zeigt die diskreten Koeffizienten im Zeit– und Frequenzbereich zusammen mit den periodifizierten zeitkontinuierlichen Funktionen.

Zeit– und Frequenzbereichskoeffizienten der DFT

Bei Anwendung von DFT bzw. IDFT ist zu beachten:

• Nach obigen Definitionen besitzen die DFT–Koeffizienten  $d(ν)$  und  $D(\mu)$  stets die Einheit der Zeitfunktion.
• Dividiert man  $D(\mu)$  durch  $f_{\rm A}$, so erhält man den Spektralwert  $X(\mu \cdot f_{\rm A})$.
• Die Spektralkoeffizienten  $D(\mu)$  müssen stets komplex angesetzt werden, um auch ungerade Zeitfunktionen berücksichtigen zu können.
• Um auch Bandpass–Signale im äquivalenten Tiefpass–Bereich transformieren zu können, verwendet man meist auch komplexe Zeitkoeffizienten  $d(\nu)$.
• Als Grundintervall für  $\nu$  und  $\mu$  definiert man meist – wie in obiger Grafik – den Bereich von  $0$  bis  $N - 1$.
• Mit den komplexwertigen Zahlenfolgen  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$   sowie   $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$  werden DFT und IDFT ähnlich wie die herkömmliche Fouriertransformation symbolisiert:
$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$
• Ist die Zeitfunktion  $x(t)$  bereits auf den Bereich  $0 \le t \lt N \cdot T_{\rm A}$  begrenzt, dann geben die von der IDFT ausgegebenen Zeitkoeffizienten direkt die Abtastwerte der Zeitfunktion an:   $d(\nu) = x(\nu \cdot T_{\rm A}).$
• Ist  $x(t)$  gegenüber dem Grundintervall verschoben, so muss man die im  $\text{Beispiel 3}$  gezeigte Zuordnung zwischen  $x(t)$  und den Koeffizienten  $d(\nu)$  wählen.

$\text{Beispiel 3:}$  Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls  $x(t)$, dessen absolute Breite kleiner ist als  $T_{\rm P} = N \cdot T_{\rm A}$.

Zur Belegung der DFT-Koeffizienten mit  $N=8$

Die untere Skizze zeigt die zugeordneten DFT–Koeffizienten gültig für  $N = 8$

• Für  $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$  gilt  $d(\nu) = x(\nu \cdot T_{\rm A})$:
$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm} d(1) = x (T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(2) = x (2T_{\rm A})\hspace{0.05cm},$$
$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$
• Dagegen sind die Koeffizienten  $d(5)$,  $d(6)$  und  d$(7)$  wie folgt zu setzen:
$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm A}\big )$$
$$\Rightarrow \hspace{0.2cm}d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$

## Exercises

• First select the number (1,...) of the exercise.
• A description of the exercise will be displayed.
• The parameter values are adjusted.
• Solution after pressing "Show solution".
• The number 0 corresponds to a "Reset":
Same setting as at program start.
Output of a "reset text" with further explanations about the applet.

(1)  New setting:  DFT of signal  $\rm (b)$:  Constant signal.  Interpret the result in the frequency domain.  What is the analogon of the conventional Fourier transform?

•  All coefficients in the time domain are  $d(\nu)=1$.  Thus all  $D(\mu)=0$  with the exception of  $\textrm{Re}[D(0)]=1$.
•  This corresponds to the conventional (time-continuous) Fourier Transform:  $x(t)=A\hspace{0.15cm} \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=A\cdot \delta (f=0)$  with  $A=1$.

(2)  Assume the obtained  $D(\mu)$  field and shift all coefficients one entry down.  Which time function does the IDFT provide?

•  Now all  $D(\mu)=0$,  except for  $\textrm{Re}[D(1)]=1$.  The result in the time domain is a complex exponential function.
•  The real part of the  $d(\nu)$-field shows a cosine and the imaginary part a sine function.  For each function one can see one period respectively.

(3)  Add the following coefficient to the current  $D(\mu)$ field:  $\textrm{Im}[D(1)]=1$.  What are the differences compared to  (2)  in the time domain?

•  On the one hand, a phase shift of two support values can now be detected for the real and the imaginary parts.  This corresponds to the phase  $\varphi = 45^\circ$.
•  On the other hand, the amplitudes of the real and the imaginary part were each increased by the factor  $\sqrt{2}$.

(4)  Set the  $D(\mu)$ field  to zero except for  $\textrm{Re}[D(1)]=1$.  Which additional  $D(\mu)$  coefficient yields a real  $d(\nu)$  field?

•  By trial and error, one can see that  $\textrm{Re}[D(15)]=1$  must apply additionally.  Then the  $d(\nu)$  field describes a cosine.
•  The following applies to the conventional (time continuous) Fourier Transform:  $x(t)=2\cdot \cos(2\pi \cdot f_0 \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=\delta (f-f_0)+\delta (f+f_0)$.
•  The entry  $D(1)$  is representative of the frequency  $f_0$  and due to the periodicity with  $N=16$  the frequency  $-f_0$  is expressed by  $D(15)=D(-1)$.

(5)  According to the IDFT in the  $d(\nu)$  field, by which  $D(\mu)$  field does one obtain a real cosine function with the amplitude  $A=1$?

•  Like the conventional Fourier transform the discrete Fourier Transform is linear  ⇒   $D(1)=D(15)=0.5$.

(6)  New setting:  DFT of signal  $\rm (e)$:  Cosine signal and subsequent signal shifts.  What are the effects of these shifts in the frequency domain?

•  A shift in the time domain changes the cosine signal to a  "harmonic oscillation"  with arbitrary phase.
•  The  $D(\mu)$  field is still zero except for  $D(1)$  and  $D(15)$.  The absolute values  $|D(1)|$  and  $|D(15)|$  also remain the same.
•  The only change concerns the phase,  i.e. the different distribution of the absolute values between the real and imaginary part.

(7)  New setting:  DFT of signal  $\rm (f)$:  Sinusoidal signal.  Interpret the result in the frequency domain.  What is the analogon of the conventional Fourier Transform?

•  The sine signal results from the cosine signal by applying four time shifts.  Therefore all statements of  (6)  are still valid.
•  For the conventional (time continuous) Fourier transform it holds that  $x(t)= \sin(2\pi \cdot f_0 \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=j/2 \cdot [\delta (f+f_0)-\delta (f-f_0)]$.
•  The coefficient  $D(1)$   $\Rightarrow$  $($frequency:  $+f_0)$  is imaginary and has the imaginary part  $-0.5$.  Accordingly,  $\textrm{Im}[D(15)]=+0.5$   ⇒   $($frequency:  $-f_0)$  applies.

(8)  New setting:  DFT of signal  $\rm (g)$:  Cosine signal (two periods).  Interpret the result in comparison to task  (5).

•  Here the time continuous Fourier transform reads  $x(t)=\cos(2\pi \cdot (2 f_0) \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X(f)=0.5 \cdot \delta (f- 2 f_0)+0.5 \cdot \delta (f+ 2 f_0)$.
•  $D(2)$  is representative of the frequency  $2 f_0$.  Due to the periodicity,  $D(14)=D(-2)$:   $D(2)=D(14)=0.5$ is representative of the frequency  $-2 f_0$.

(9)  Now examine the case DFT of a sinodial signal (two periods).  Which modifications do you need to make in the time domain?  Interpret the result.

•  The desired signal can be obtained from the DFT of signal  $\rm (g)$:  Cosine signal (two periods) with two shifts.  With the result of  (7):  Four shifts.
•  The DFT result is accordingly  $\textrm{Im}[D(2)]=-0.5$  and  $\textrm{Im}[D(14)]=+0.5$.

(10)  New setting: DFT of signal  $\rm (h)$:  Alternating time coefficients.  Interpret the DFT result.

•  Here, the time continuous Fourier transform is given by:  $x(t)=\cos(2\pi \cdot (8 f_0) \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=0.5 \cdot \delta (f- 8 f_0)+0.5 \cdot \delta (f+ 8 f_0)$.
•  $8 f_0$ is the highest frequency that can be displayed with  $N=16$  in the DFT.  There are only two sampled values per period, namely $+1$ and $-1$.
•  Difference to exercise  (5):  $D(1)=0.5$  now becomes  $D(8)=0.5$.  Likewise,  $D(15)=0.5$  is shifted to  $D(8)=0.5$.  Final result:  $D(8)=1$.

(11)  What are the differences between the two settings DFT from signal  $\rm (i)$:  Dirac impulse   and   IDFT from spectrum  $\rm (I)$:  Dirac spectrum?

•  None! In the first case, all coefficients are  $D(\mu)=1$ (real);  in the second case, however, equivalently  $d(\nu)=1$ (real).

(12)  Are there differences in shifting the real  "$1$"  in the according input fields by one place at a time, that is for  $d(\nu = 1)=1$  and  $D(\mu = 1)=1$?

•  The first case  $\Rightarrow$  $\textrm{Re}[d(\nu = 1)]=1$  results in the complex exponential function in the frequency domain given by  $X(f)= \textrm{e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f/f_0}$  with negative sign.
•  The second case  $\Rightarrow$  $\textrm{Re}[D(\mu = 1)]=1$ results in the complex exponential function in the time domain given by  $x(t)= \textrm{e}^{+{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f_0\cdot t}$  with positive sign.
•  Note:  With  $\textrm{Re}[D(\mu=15)]=1$  the result in the time domain would also be a complex exponential function  $x(t)= \textrm{e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f_0\hspace{0.05cm}\cdot\hspace{0.05cm} t}$ with negative sign.

(13)  New setting: DFT of signal  $\rm (k)$:  Triangle impulse.  Interpret the  $d(\nu)$  assignment under the assumption  $T_\textrm{A} = 1$ ms.

•  Change the display to "absolute value".  $x(t)$ is symmetrical around  $t=0$  and extends from  $-8 \cdot T_\textrm{A} = -8$  ms to  $+8 \cdot T_\textrm{A}= +8$  ms.
•  $d(\nu)$  assignment:  $d(0)=x(0)=1$,  $d(1)=x(T_\textrm{A})=0.875$, ... ,  $d(8)=x(8 T_\textrm{A})=0$,  $d(9)=x(-7 T_\textrm{A})=0.125$, ... ,  $d(15)=x(-T_\textrm{A})=0.875$.

(14)  Same setting as  (13).  Interpret the DFT result, especially the coefficients  $D(0)$,  $D(1)$,  $D(2)$  and  $D(15)$.

• In the frequency range  $D(0)$  stands for the frequency  $f=0$  and  $D(1)$  and  $D(15)$  for the frequencies  $\pm f_\textrm{A}$.  It holds that  $f_\textrm{A}= 1/ (N\cdot T_\textrm{A})=62.5$  Hz.
• For the value of the continuous spectrum at $f=0$ the following applies:   $X(f=0)=D(0)/f_\textrm{A} = 0.5/ (0.0625$ kHz$)=8\cdot \textrm{kHz}^{-1}$.
• The first zero of the  $\textrm{si}^2$–shaped spectrum  $X(f)$  occurs at  $2\cdot f_\textrm{A} = 125$ Hz.  The other zeros are equidistant.

(15)  New setting: DFT of signal  $\rm (i)$:  Rectangular impulse.  Interpret the displayed results.

•  The set (symmetrical) rectangle extends over  $\pm 4 \cdot T_\textrm{A}$.  At the edges, the time coefficients are only half as large:  $d(4)=d(12)=0.5$.
• The further statements of  (14)  also apply to this  $\textrm{si}$–shaped spectrum  $X(f)$.

(16)  Same setting as for  (15).  Which modifications need to be made in the  $d(\nu)$  field, to have the duration of the rectangle   $\Rightarrow$   $\pm 2 \cdot T_\textrm{A}$.

•  $d(0) = d(1) = d(15) =1, \ d(2) = d(14) = 0.5$. Alle anderen Zeitkoeffizienten Null  ⇒   erste Nullstelle des  ${\rm si}$–Spektrums bei  $4 \cdot f_{\rm A}= 250\text{ Hz}$.

(17)  New setting:  IDFT of spectrum  $\rm (L)$:  Gaussian spectrum.  Interpret the result in the time domain.

•  Here, the time function  $x(t)$  is Gaussian with the maximum  $x(t=0)=4$.  For the spectrum the following applies:  $X(f=0)=D(0)/f_\textrm{A} = 16 \cdot \textrm{kHz}^{-1}$.
•  The equivalent duration of the impulse is  $\Delta t = X(f=0)/x(t=0)=4\text{ ms}$.  The inverse value gives the equivalent bandwidth  $\Delta f = 1/\Delta t = 250\text{ Hz}$.

## Applet Manual

(A)     Zeitbereich (Eingabe- und Ergebnisfeld)

(B)     (A)–Darstellung numerisch, grafisch, Betrag

(C)     Frequenzbereich (Eingabe- und Ergebnisfeld)

(D)     (C)–Darstellung numerisch, grafisch, Betrag

(E)     Auswahl: DFT  $(t \to f)$  oder IDFT  $(f \to t)$

(F)     Vorgegebene  $d(\nu)$–Belegungen (falls DFT), oder

Vorgegebene  $D(\mu)$–Belegungen (falls IDFT)

(G)     Eingabefeld auf Null setzen

(H)     Eingabefeld zyklisch nach unten (bzw. oben) verschieben

( I )     Bereich für die Versuchsdurchführung:   Aufgabenauwahl

(J)     Bereich für die Versuchsdurchführung:   Aufgabenstellung

(K)     Bereich für die Versuchsdurchführung:   Musterlösung einblenden

• Vorgegebene  $d(\nu)$–Belegungen (für DFT):
(a)  entsprechend Zahlenfeld,  (b)  Gleichsignal,  (c)  Komplexe Exponentialfunktion der Zeit,  (d)  Harmonische Schwingung  $($Phase  $\varphi = 45^\circ)$,
(e)  Cosinussignal (eine Periode),  (f)  Sinussignal (eine Periode),  (g)  Cosinussignal (zwei Perioden), (h)  Alternierende Zeitkoeffizienten,
(i)  Diracimpuls,  (j)  Rechteckimpuls,  (k)  Dreieckimpuls,  (l)  Gaußimpuls.
• Vorgegebene  $D(\mu)$–Belegungen (für IDFT):
(A)  entsprechend Zahlenfeld,  (B)  Konstantes Spektrum,  (C)  Komplexe Exponentialfunktion der Frequenz,  (D)  äquivalent zur Einstellung (d) im Zeitbereich ,
(E)  Cosinussignal (eine Frequenzperiode),  (F)  Sinussignal (eine Frequenzperiode),  (G)  Cosinussignal (zwei Frequenzperioden),  (H)  Alternierende Spektralkoeffizienten,
(I)  Diracspektrum,  (J)  Rechteckspektrum,  (K)  Dreieckspektrum,  (L)  Gaußspektrum.

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

• Die erste Version wurde 2003 von  Thomas Großer  im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer:  Günter Söder).
• 2019 wurde das Programm von  Carolin Mirschina  im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer:  Tasnád Kernetzky).

Die Umsetzung dieses Applets auf HTML 5 wurde durch  Studienzuschüsse  der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.