Processing math: 100%

Exercise 2.6Z: PN Generator of Length 3

From LNTwww

PN generator with  L=3

The adjacent sketch shows a PN generator of length  L=3  with generator polynomial

G(D)=D3+D2+1

and thus the octal identifier  (g3 g2 g1 g0) = (1 1 0 1)bin=(15)oct.

The corresponding reciprocal polynomial

GR(D)=D3(D3+D2+1)=D3+D1+1

has the octal identifier  (1 0 1 1)bin=(13)oct.

  • At start time,  let the three memory cells be preallocated with the binary values  10  and  1 .
  • Both arrangements generate an  "M-sequence".




Hints:


Questions

1

How long is the period length of the configuration  (15)?

P = 

2

Determine the output sequence  zν  for the time points  1, ... , P.  What are the first  15  binary values of the output sequence?
Hint: From left to right,  label the cells with  S1S2  and  S3.  Output the value  zν  that is currently  (at time  ν)  entered into the memory cell  S1.

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 . . .
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 . . .
1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 . . .
0 0 1 1 1 0 1 0 0 1 1 1 0 1 0. . .

3

Which of the following statements are true for each M-sequence?

The number of  "zeros"  and  "ones"  is equal.
In each period there is one more  "one"  than  "zeros".
The maximum number of consecutive  "ones"  is  L.
The sequence  1 0 1 0 1 0 ...   is not possible.

4

Now consider the reciprocal order  (13).  What are the first  15  binary values of the output sequence with the same initial assignment here?

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 . . .
0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 . . .
0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 . . .


Solution

PN generator with octal identifier  15

(1)  It is an M-sequence with  L=3.  It follows that P=2L1=7_.


(2)  We denote the cells from left to right by  S1S2  and  S3.  Then holds:

  • S2(ν)=S1(ν1),
  • S3(ν)=S2(ν1),
  • S1(ν)=S2(ν1) mod S3(ν1).


The result is entered in the first row of the above table  (marked in red):

  • At the clock time  ν=7  results in the same memory usage as at the time  ν=0.
  • From this follows  P=7  and the sequence is from  ν=1  corresponding to  solution 3:
zν=1 1 0 0 1 1 0 0 1 0 1 1...
  • In contrast,  proposal 1 describes the M sequence of the PN generator with length  L=4  and identifier  (31)   ⇒   period length is  P=15.
  • In proposal 2,  the period length  P=4  is too short.
  • Finally,  the last proposal would have the desired period length  P=7,  but from the modulo 2 addition of  S2=0  and  S3=1  (for  ν=0)  it necessarily follows at the next time  (ν=1):   S1=1.   This property is not exhibited by sequence 4.


(3)  Correct are solutions 2, 3, and 4:

  • The maximum number of consecutive  "ones"  is  L  (namely if there is a  "one"  in all  L  memory cells).
  • On the other hand,  it is not possible that all memory cells are filled with  "zeros".  Therefore,  there is always one more  "one"  than  "zeros".
  • The period length of the last sequence is  P=2.  On the other hand,  for an M-sequence  P=2L1.  For no value of  L:    P=2  is possible.


PN generator with octal identifier  13

(4)  In the adjacent table the emergence of the PN sequence at the reciprocal polynomial  GR(D)  is entered.  It can be seen that the  proposed solution 2 applies:

  • Also for the reciprocal arrangement,  the period length  P=7  must hold,  so that proposition 1  (with  P=15)  is eliminated.
  • Proposal 3 is just a version of the output sequence of  (15) shifted by two clocks.
  • In contrast,  in the (correct) second proposal,  the inverse of ... 1 1 0 0 1 0 1 ... – thus the sequence ... 1 0 1 0 0 1 1 ... – are included,  albeit with a phase shift.