Aufgabe 3.4Z: Augenöffnung und Stufenzahl

From LNTwww

Binäres und quaternäres Augendiagramm

In dieser Aufgabe werden ein redundanzfreies Binärsystem und ein redundanzfreies Quaternärsystem hinsichtlich vertikaler Augenöffnung miteinander verglichen. Für die beiden Übertragungssysteme gelten die gleichen Randbedingungen:

  • Der Sendegrundimpuls  $g_s(t)$  ist jeweils NRZ–rechteckförmig und besitze die Höhe  $s_0 = 1 \, {\rm V}$.
  • Die (äquivalente) Bitrate beträgt  $R_{\rm B} = 100 \, {\rm Mbit/s}$.
  • Das AWGN–Rauschen besitzt die Rauschleisungsdichte  $N_0$.
  • Das Empfangsfilter sei ein Gaußtiefpass mit der Grenzfrequenz  $f_{\rm G} = 30 \, {\rm MHz}$:
$$H_{\rm G}(f) = {\rm e}^{{- \pi \cdot f^2}/{(2f_{\rm G})^2}}\hspace{0.05cm}.$$
  • Die Entscheiderschwellen sind optimal. Der Detektionszeitpunkt ist  $T_{\rm D} = 0$.


Für die halbe Augenöffnung eines  $M$–stufigen Übertragungssystems gilt allgemein:

$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} - \sum_{\nu = 1}^{\infty} |g_\nu | - \sum_{\nu = 1}^{\infty} |g_{-\nu} |\hspace{0.05cm}.$$

Hierbei ist  $g_0 = g_d(t = 0)$  der Hauptwert des Detektionsgrundimpulses  $g_d(t) = g_s(t) * h_{\rm G}(t)$. Der zweite Term beschreibt die Nachläufer  $g_{\rm \nu} = g_d(t = \nu T)$  und der letzte Term die Vorläufer  $g_{\rm -\nu} = g_d(t = -\nu T)$.

Beachten Sie, dass bei der vorliegenden Konfiguration mit Gaußtiefpass

  • alle Detektionsgrundimpulswerte  $\text{...} \, g_{\rm -1}, \, g_0, \, g_1, \, \text{...}$  positiv sind,
  • die (unendliche) Summe  $\text{...} \, + \, g_{\rm -1} + g_0 + g_1\,\text{...}$  den konstanten Wert  $s_0$  ergibt,
  • der Hauptwert mit der komplementären Gaußschen Fehlerfunktion  ${\rm Q}(x)$  berechnet werden kann:
$$g_0 = s_0 \cdot\big [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\big] \hspace{0.05cm}.$$

Die Grafik zeigt die Augendiagramme des Binär– und des Quaternärsystems sowie – in roter Farbe – die zugehörigen Detektionsgrundimpulse  $g_d(t)$:

  • Eingezeichnet sind auch die optimalen Entscheiderschwellen  $E$  $($für $M = 2)$  bzw.  $E_1$,  $E_2$,  $E_3$ $($für $M = 4)$.
  • In der Teilaufgabe (7) sollen diese numerisch ermittelt werden.



Hinweise:

  • Für die komplementäre Gaußsche Fehlerfunktion gilt:
$${\rm Q}(0.25) = 0.4013,\hspace{0.2cm}{\rm Q}(0.50) = 0.3085,\hspace{0.2cm}{\rm Q}(0.75) = 0.2266,\hspace{0.2cm}{\rm Q}(1.00) = 0.1587,$$
$${\rm Q}(1.25) = 0.1057,\hspace{0.2cm}{\rm Q}(1.50) = 0.0668,\hspace{0.2cm}{\rm Q}(1.75) = 0.0401,\hspace{0.2cm}{\rm Q}(2.00) = 0.0228.$$


Fragebogen

1

Wie groß ist die Symboldauer  $T$  beim Binär– bzw. beim Quaternärsystem?

$M = 2\text{:}\hspace{0.4cm} T \ = \ $

$\ {\rm ns}$
$M = 4\text{:}\hspace{0.4cm} T \ = \ $

$\ {\rm ns}$

2

Berechnen Sie den Hauptwert  $g_0$  für das Binärsystem.

$M = 2\text{:}\hspace{0.4cm} g_0\ = \ $

$\ {\rm V}$

3

Berechnen Sie den Hauptwert  $g_0$  für das Quaternärsystem.

$M = 4\text{:}\hspace{0.4cm} g_0\ = \ $

$\ {\rm V}$

4

Welche Gleichungen gelten unter Berücksichtigung des Gaußtiefpasses?

$\ddot{o}(T_{\rm D})/2 = M \cdot g_0/(M - 1) - s_0,$
$\ddot{o}(T_{\rm D})/2 = M \cdot s_0/(M - 1) - g_0,$
$\ddot{o}(T_{\rm D})/2 = s_0/(M - 1) \cdot \big [1 - 2 \cdot M \cdot {\rm Q}(\sqrt{2\pi} \cdot {\rm log_2} \, (M) \cdot f_{\rm G}/R_{\rm B}) \big ].$

5

Welche Augenöffnung ergibt sich für das Binärsystem?

$M = 2\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ $

$\ {\rm V}$

6

Welche Augenöffnung ergibt sich für das Quaternärsystem?

$M = 4\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ $

$\ {\rm V}$

7

Bestimmen Sie die optimalen Schwellenwerte des Quaternärsystems. Geben Sie zur Kontrolle den unteren Schwellenwert  $E_1$  ein.

$M = 4\text{:}\hspace{0.4cm} E_1\ = \ $

$\ {\rm V}$


Musterlösung

(1)  Beim Binärsystem ist die Bitdauer gleich dem Kehrwert der äquivalenten Bitrate:

$$T = \frac{1}{R_{\rm B}}= \frac{1}{100\,{\rm Mbit/s}}\hspace{0.15cm}\underline {= 10\,{\rm ns}}\hspace{0.05cm}.$$

Die Symboldauer des Quaternärsystems ist doppelt so groß:

$$T = \frac{{\rm log_2}\hspace{0.1cm}4}{R_{\rm B}}\hspace{0.15cm}\underline {= 20\,{\rm ns}}\hspace{0.05cm}.$$

(2)  Entsprechend der angegebenen Gleichung gilt für das Binärsystem:

$$g_0 \ = \ s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]= 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 30\,{\rm MHz} \cdot 10\,{\rm ns} \right)\right] $$
$$\Rightarrow \hspace{0.3cm} g_0 \ \approx \ 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( 0.75 \right)\right] = 1\,{\rm V} \cdot\left [ 1- 2 \cdot 0.2266 \right]\hspace{0.15cm}\underline { = 0.547\,{\rm V}} \hspace{0.05cm}.$$


(3)  Aufgrund der doppelten Symboldauer ergibt sich bei gleicher Grenzfrequenz für $M = 4$:

$$g_0 \ = 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( 1.5 \right)\right] = 1\,{\rm V} \cdot\left [ 1- 2 \cdot 0.0668 \right] \hspace{0.15cm}\underline {= 0.867\,{\rm V}} \hspace{0.05cm}.$$


(4)  Erweitert man die angegebene Gleichung um $±g_0$, so erhält man:

$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} + g_0 - g_0 - \sum_{\nu = 1}^{\infty} g_\nu - \sum_{\nu = 1}^{\infty} g_{-\nu} = \frac{M}{ M-1} \cdot g_0 - s_0 \hspace{0.05cm}.$$

Hierbei ist berücksichtigt:

  • Beim Gaußtiefpass kann auf die Betragsbildung verzichtet werden.
  • Die Summe über alle Detektionsimpulswerte ist gleich $s_0$.


Richtig ist also der erste, aber auch der letzte Lösungsvorschlag:

$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{M}{ M-1} \cdot g_0 - s_0 = \frac{M}{ M-1} \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]- s_0 $$
$$\Rightarrow \hspace{0.3cm} {\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{s_0}{ M-1} \cdot \left [ 1- 2 \cdot M \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right] \hspace{0.05cm}.$$

Mit der Beziehung $T = {\rm log_2} \,(M)/R_{\rm B}$ kommt man zum dritten, ebenfalls zutreffenden Lösungsvorschlag.


(5)  Mit den Ergebnissen aus (2) und (4) sowie $M = 2$ erhält man:

$${\ddot{o}(T_{\rm D})} = 2 \cdot (2 \cdot g_0 - s_0) = 2 \cdot (2 \cdot 0.547\,{\rm V} - 1\,{\rm V}) \hspace{0.15cm}\underline {= 0.188\,{\rm V}} \hspace{0.05cm}.$$


(6)  Mit $g_0 = 0.867 \, {\rm V}$, $s_0 = 1 \, {\rm V}$ und $M = 4$ ergibt sich dagegen:

$${\ddot{o}(T_{\rm D})} = 2 \cdot ({4}/{3} \cdot 0.867\,{\rm V} - 1\,{\rm V}) \hspace{0.15cm}\underline {= 0.312\,{\rm V}} \hspace{0.05cm}.$$


(7)  Entsprechend Teilaufgabe (3) ist $g_0 = 0.867 \, {\rm V}$ und dementsprechend $g_{\rm VN} = 0.133 \, {\rm V}$ (Summe aller Vor– und Nachläufer).

  • Die Augenöffnung beträgt $\ddot{o} = 0.312 \, {\rm V}$.
  • Aus der Skizze auf der Angabenseite erkennt man, dass die obere Begrenzung des oberen Auges folgenden Wert besitzt (für $T_{\rm D} = 0$):
$$o = s_0 - 2 \cdot g_{\rm VN}= g_0 - g_{\rm VN}= 0.867\,{\rm V} - 0.133\,{\rm V} = 0.734\,{\rm V} \hspace{0.05cm}.$$
  • Die untere Begrenzung liegt bei:
$$u = o -{\ddot{o}} = 0.734\,{\rm V} - 0.312\,{\rm V} = 0.422\,{\rm V} \hspace{0.05cm}.$$
  • Daraus folgt für die optimale Entscheiderschwelle des oberen Auges:
$$E_3 = \frac{o + u}{2} = \frac{0.734\,{\rm V} + 0.422\,{\rm V}}{2} { = 0.578\,{\rm V}} \hspace{0.05cm}.$$
  • Der gesuchte Schwellenwert (für das untere Auge) ist $E_1 \, \underline {= \, –0.578 \, V}$.
  • Die mittlere Entscheiderschwelle liegt aus Symmetriegründen bei $E_2 = 0$.