Exercise 1.1: Basic Transmission Pulses
In this exercise, we examine the two transmitted signals sR(t) and sC(t) with rectangular resp. cosine–square basic transmission pulse, shown in the diagram.
In particular, the following characteristics are to be calculated for the respective basic transmission pulses gs(t):
- the equivalent pulse duration of gs(t):
- ΔtS=∫+∞−∞gs(t)dtMax[gs(t)],
- the energy of gs(t):
- Eg=∫+∞−∞g2s(t)dt,
- the power of the transmitted signal s(t):
- PS=limTM→∞1+TM⋅∫+TM/2−TM/2s2(t)dt.
Always assume in your calculations that the two possible amplitude coefficients are equally likely and that the distance between adjacent symbols is T=1 µs. This corresponds to a bit rate of R=1 Mbit/s.
- The (positive) maximum value of the transmitted signal is the same in both cases:
- s0=√0.5W.
- Assuming that the transmitter is terminated with a 50\ \rm Ω resistor, this corresponds to the following voltage value:
- s_0^2 = 0.5\, {\rm W} \cdot 50\, {\rm \Omega} = 25\, {\rm V}^2 \hspace{0.15cm} \Rightarrow \hspace{0.15cm} s_0 =5\, {\rm V} \hspace{0.05cm}.
Notes:
- The exercise belongs to the chapter "System Components of a Baseband Transmission System".
- Reference is made in particular to the section "Characteristics of the digital transmitter".
- Given is the following indefinite integral:
- \int \cos^4(a x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a x)+ \frac{1}{32a} \cdot \sin(4 a x)\hspace{0.05cm}.
Questions
Solution
- In both cases, the transmitted signal can be represented in the following form:
- s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)
- For the signal s_{\rm R}(t), the amplitude coefficients a_ν are either 0 or 1. Thus, a unipolar signal is present.
- In contrast, for the bipolar signal s_{\rm R}(t) ⇒ a_ν ∈ \{–1, +1\} holds.
(2) The signal s_{\rm R}(t) is NRZ ("non-return-to-zero") rectangular.
- Accordingly, both the absolute pulse duration T_{\rm S} and the equivalent pulse duration \Delta t_{\rm S} are equal to the symbol duration T:
- T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.
- The basic transmission pulse for the signal s_{\rm C}(t) is:
- g_s(t) = \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{20}c} -T/2 \le t \le +T/2 \hspace{0.05cm}, \\ {\rm else} \hspace{0.05cm}. \\ \end{array}
- From the diagram on the information section, we can see that the following values apply to the cosine–square pulse:
- T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.
(3) For the energy of the rectangular pulse holds:
- E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = s_0^2 \cdot T = 0.5\, {\rm W} \cdot 1\, {\rm µ s} \hspace{0.1cm}\underline{= 0.5 \cdot 10^{-6}\, {\rm Ws}}\hspace{0.05cm}.
(4) For a bipolar rectangular signal, the following would apply:
- s_{\rm R}^2(t)= s_0^2 = {\rm const.} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_s = s_0^2 \cdot \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int ^{T_{\rm M}/2} _{-T_{\rm M}/2} \,{\rm d}t = s_0^2 \hspace{0.05cm}.
- However, since the signal s_{\rm R}(t) is unipolar here, in half the time s_{\rm R}(t)= 0. Thus, we get:
- P_{\rm S} = {1}/{2} \cdot s_0^2 \hspace{0.1cm}\underline{= 0.25 \,{\rm W}} \hspace{0.05cm}.
(5) For the energy of the cosine–square pulse holds:
- E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = 2 \cdot s_0^2 \cdot \int^{T/2} _{0} \cos^4(\pi \cdot {t}/{T})\,{\rm d}t \hspace{0.05cm}.
- Here, the formula derived in subtask (3) and the symmetry of g_s(t) about time t = 0 are considered.
- The integral is given in the task description, where a = π/T is to be set:
- E_g = 2 \cdot s_0^2 \cdot \left [ \frac{3}{8} \cdot t + \frac{T}{4\pi} \cdot \sin(2 \pi \frac{t}{T})+ \frac{T}{32\pi} \cdot \sin(4 \pi \frac{t}{T})\right ]_{0}^{T/2}\hspace{0.05cm}.
- The lower bound t = 0 always yields the result 0. With respect to the upper bound, only the first term yields a result different from 0. Thus:
- E_g = 2 \cdot s_0^2 \cdot \frac{3}{8} \cdot \frac{T}{2} = \frac{3}{8} \cdot 5 \cdot 10^{-7}\, {\rm Ws} \hspace{0.1cm}\underline{ = 0.1875 \cdot 10^{-6}\, {\rm Ws}}\hspace{0.05cm}.
(6) The following relationship holds for the bipolar signal s_{\rm C}(t):
- P_{\rm S} = \frac{ E_g}{T} = \frac{ 1.875 \cdot 10^{-7}\, {\rm Ws}}{10^{-6}\, {\rm s}}\hspace{0.1cm}\underline{ = 0.1875 \,{\rm W}} \hspace{0.05cm}.