Exercise 1.2: A Simple Binary Channel Code

From LNTwww

Clarification:  Channel coding and decoding

The graph illustrates the channel coding  $\mathcal{C}$  considered here:

  • There are four possible information blocks  $\underline{u} = (u_{1},\ u_{2},\ \text{...}\hspace{0.05cm} ,\ u_{k})$.
  • Each information block  $\underline{u}$  is uniquely assigned  (recognizable by the same color)  to the code word  $\underline{x}= (x_{1},\ x_{2},\ \text{...}\hspace{0.05cm} ,\ x_{n})$ .
  • Due to decoding errors  $(0 → 1, \ 1 → 0)$  there are more than 4,  namely 16 different receive words  $\underline{y} = (y_{1},\ y_{2},\ \text{...} \hspace{0.05cm} ,\ y_{n})$.


From subtask  (4)  we consider the following mapping:

$$\underline{u_0} = (0,\ 0) \leftrightarrow (0,\ 0,\ 0,\ 0) = \underline{x_0}\hspace{0.05cm},$$
$$\underline{u_1} = (0,\ 1) \leftrightarrow (0,\ 1,\ 0,\ 1) = \underline{x_1}\hspace{0.05cm},$$
$$\underline{u_2} = (1,\ 0) \leftrightarrow (1,\ 0,\ 1,\ 0) = \underline{x_2}\hspace{0.05cm},$$
$$\underline{u_3} = (1,\ 1) \leftrightarrow (1,\ 1,\ 1,\ 1) = \underline{x_3}\hspace{0.05cm}.$$


Hints:

  • Reference is made in particular to the pages 



Questions

1

How many binary symbols does an information block consist of?

$k \ = \ $

2

What is the code word length  $n$?

$n \ = \ $

3

What is the code rate?

$R \ = \ $

4

Is the code given here systematic?

Yes,
No.

5

Give the Hamming weights of all code words.

$ w_{\rm H} \ (\underline{x}_0) \ = \ $

$ w_{\rm H} \ (\underline{x}_1) \ = \ $

$ w_{\rm H} \ (\underline{x}_2) \ = \ $

$ w_{\rm H} \ (\underline{x}_3) \ = \ $

6

Indicate the Hamming distances between the following code words.

$ d_{\rm H} \ (\underline{x}_0,\ \underline{x}_1) \ = \ $

$ d_{\rm H} \ (\underline{x}_0,\ \underline{x}_3) \ = \ $

$ d_{\rm H} \ (\underline{x}_1,\ \underline{x}_2) \ = \ $

7

What is the minimum Hamming distance of the code  $\mathcal{C}$  under consideration?

$ d_{\rm min} (\mathcal{C}) \ = \ $


Solution

(1)  The code size here is given to  $|\mathcal{C}| = 4$.

  • In general,  $|\mathcal{C}|= 2^k$.
  • From this follows  $\underline{ k = 2}$.


(2)  Each code word  $\underline{x}$  is uniquely associated with an information block  $\underline{u}$.

  • By corruptions of a single of the total  $n$  bits of a code word  $\underline{x}$  the receive words  $\underline{y}$  result.
  • From the number  $(16 = 2^4$)  of possible receive words follows  $\underline{ n = 4}$.


(3)  The code rate is by definition  $R = k/n$.  Using the above results,  we obtain $\underline{R = 0.5}$.


(4)  Correct is  Yes:  A systematic code is characterized by the fact that in each case the first  $k$  bits of the code words are identical to the information block.


(5)  The Hamming weight of a binary code is equal to the algebraic sum  $x_1 + x_2 + \text{...} + x_n$  over all code word elements.  Thus:

$$w_{\rm H}(\underline{x}_0) \hspace{0.15cm} \underline {= 0} \hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_1) \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}, \hspace{0.3cm} w_{\rm H}(\underline{x}_2) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}.$$


(6)  The Hamming distance between two code words here can only take the values  $2$  and  $4$:

$$d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_1) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_2) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
$$ d_{\rm H}(\underline{x}_1, \hspace{0.05cm}\underline{x}_2) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_1, \hspace{0.05cm}\underline{x}_3) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_2, \hspace{0.05cm}\underline{x}_3) = 2\hspace{0.05cm}.$$


(7)  From the result of subtask  (6)  it follows  $d_{\rm min}(\mathcal{C}) \hspace{0.15cm}\underline{= 2}$.

  • Generally,  for this quantity:
$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.$$