Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.4Z: Modified MS43 Code

From LNTwww

Code table of the MMS43 code

For ISDN data transmission,  the MMS43 code is used in Germany and Belgium on the so-called  "UK0"  interface  (transmission path between the exchange and the NTBA)

The abbreviation  "MMS43"  stands for  "Modified Monitored Sum 4B3T".

This is a 4B3T block code with the four code tables shown in the graphic,  which are used for coding according to the so-called "running digital sum"  (after  l  blocks):

Σl=3lν=1aν

For initialization:  Σ0=0  is used.


The colorings in the graph mean:

  • If the running digital sum does not change   (Σl+1=Σl),  a field is grayed out.
  • An increase   (Σl+1>Σl)   is highlighted in red,  a decrease   (Σl+1<Σl)   in blue.
  • The more intense these colors are,  the greater the change in the running digital sum.



Notes:



Questions

1

What are the reasons for using the 4B3T code instead of the redundancy-free binary code in ISDN?

4B3T is in principle better than the redundancy-free binary code.
The transmitted signal should be free of DC signals if the channel frequency response  HK(f=0)=0
A small symbol rate  (1/T)  allows a longer cable length.

2

Encode the binary sequence  "1100010001101010"  according to the table.
What is the coefficient of the third ternary symbol of the fourth block?

a12 = 

3

Determine the Markov diagram for the transition from  Σl  to  Σl+1.  What are the transition probabilities?

Pr(Σl+1=0 | Σl=0) = 

Pr(Σl+1=2 | Σl=0) = 

Pr(Σl+1=0 | Σl=2) = 

4

What properties follow from the Markov diagram?

The probabilities   Pr(Σl=0), ... ,Pr(Σl=3)   are equal.
Pr(Σl=0)=Pr(Σl=3)   and   Pr(Σl=1)=Pr(Σl=2)  are valid.
The extreme values  (0 or 3)  occur less frequently than  1  or  2.


Solution

(1)  Statements 2 and 3  are correct:

  • The first statement is not true:  For example,  the AWGN channel  ("additive white Gaussian noise") with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code.
  • The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a  "telephone channel".
  • The  25%  smaller symbol rate  (1/T)  of the 4B3T code also accommodates the transmission characteristics of copper lines  (strong increase in attenuation with frequency).
  • For a given line attenuation,  therefore,  a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.


(2)  With the initial value  Σ0=0,  the 4B3T coding results in:

  • 1100   ⇒   "+ + +"   ⇒   Σ1=3,
  • 0100   ⇒   " – + 0"   ⇒   Σ2=3,
  • 0110   ⇒   "– – +"   ⇒   Σ3=2,
  • 1010   ⇒   "+ – –"   ⇒   Σ4=1.


Thus,  the amplitude coefficient we are looking for is  a_{12}\hspace{0.15cm} \underline{ = \ –1}.


Markov diagram for the MMS43 code

(3)  From the coloring of the given code table,  one can determine the following Markov diagram.

  • From it,  the transition probabilities we are looking for can be read:
{\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},
{\rm Pr}({\it \Sigma}_{l+1} = 2 \ | \ {\it \Sigma}_{l}=0) \ = \ 3/16 \underline{ \ = \ 0.1875},
{\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=2) \underline{ \ = \ 0}.


(4)  Statements 2 and 3  are correct:

  • The first statement is false,  which can be seen from the asymmetries in the Markov diagram.
  • On the other hand,  there are symmetries with respect to the states  "0"  and  "3"  and between  "1"  and  "2".


In the following calculation,  instead of  {\rm Pr}({\it \Sigma}_{l} = 0),  we write  {\rm Pr}(0)  in a simplified way.

  • Taking advantage of the properties  {\rm Pr}(3) = {\rm Pr}(0)  and  {\rm Pr}(2) = {\rm Pr}(1),  we get the following equations from the Markov diagram:
{\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).
  • From the further condition  {\rm Pr}(0) + {\rm Pr}(1) = 1/2  follows further:
{\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.
This calculation is based on the  sum of the incoming arrows in the "0" condition.
  • One could also give equations for the other three states,  but they all give the same result:
{\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},
{\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},
{\rm Pr}(3) \ = \ \frac{1}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm}.