Exercise 3.12: Trellis Diagram for Two Precursors

From LNTwww

Trellis diagram for two precursors

We assume the basic pulse values   $g_0\ne 0$,  $g_{\rm –1}\ne 0$  and  $g_{\rm –2}\ne 0$: 

  • This means that the decision on the symbol  $a_{\rm \nu}$  is also influenced by the subsequent coefficients  $a_{\rm \nu +1}$  and  $a_{\rm \nu +2}$. 
  • Thus,  for each time point   $\nu$,  exactly eight  metrics   $\varepsilon_{\rm \nu}$  have to be determined, from which the  minimum accumulated metrics   ${\it \Gamma}_{\rm \nu}(00)$,  ${\it \Gamma}_{\rm \nu}(01)$,  ${\it \Gamma}_{\rm \nu}(10)$  and  ${\it \Gamma}_{\rm \nu}(11)$  can be calculated.
  • For example,   ${\it \Gamma}_{\rm \nu}(01)$  provides information about the symbol  $a_{\rm \nu}$  under the assumption that  $a_{\rm \nu +1} = 0$  and  $a_{\rm \nu +2} = 1$  will be.
  • Here, the minimum accumulated metric   ${\it \Gamma}_{\rm \nu}(01)$  is the smaller value obtained from the comparison of
$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and} \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$

To calculate the minimum accumulated metric   ${\it \Gamma}_2(10)$  in subtasks (1) and (2),  assume the following numerical values:

  • unipolar amplitude coefficients:  $a_{\rm \nu} ∈ \{0, 1\}$,
  • basic pulse values   $g_0 = 0.5$,  $g_{\rm –1} = 0.3$,  $g_{\rm –2} = 0.2$,
  • applied noisy detection sample:  $d_2 = 0.2$,
  • minimum accumulated metric at time  $\nu = 1$:
$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) = 1.2 \hspace{0.05cm}.$$

The graph shows the simplified trellis diagram for time points   $\nu = 1$  to   $\nu = 8$. 

  • Blue branches come from either   ${\it \Gamma}_{\rm \nu –1}(00)$   or   ${\it \Gamma}_{\rm \nu –1}(01)$   and denote a hypothetical  "$0$".
  • In contrast,  all red branches – starting from the   ${\it \Gamma}_{\rm \nu –1}(10)$  or   ${\it \Gamma}_{\rm \nu –1}(11)$  states – indicate the symbol  "$1$".


Notes:

  • All quantities here are to be understood normalized.
  • Also, assume unipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$


Questions

1

Calculate the following metrics:

$\varepsilon_2(010) \ = \ $

$\varepsilon_2(011) \ = \ $

$\varepsilon_2(110) \ = \ $

$\varepsilon_2(111) \ = \ $

2

Calculate the following minimum accumulated metrics:

${\it \Gamma}_2(10) \ = \ $

${\it \Gamma}_2(11) \ = \ $

3

What are the symbols output by the Viterbi receiver?

The first seven symbols are   "$1011010$".
The first seven symbols are   "$1101101$".
The last symbol  $a_8 = 1$  is safe.
No definite statement can be made about the symbol  $a_8$. 


Solution

(1)  The first metric is calculated as follows:

$$\varepsilon_{2}(010) = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01} \hspace{0.05cm}.$$

Correspondingly,  for the other metrics:

$$\varepsilon_{2}(011) \ = \ [0.2 -0.3- 0.2]^2\hspace{0.15cm}\underline {=0.09}\hspace{0.05cm},$$
$$\varepsilon_{2}(110) \ = \ [0.2 -0.5- 0.3]^2\hspace{0.15cm}\underline {=0.36}\hspace{0.05cm},$$
$$\varepsilon_{2}(111) \ = \ [0.2 -0.5- 0.3-0.2]^2\hspace{0.15cm}\underline {=0.64} \hspace{0.05cm}.$$


(2)  The task is to find the minimum value of each of two comparison values:

$${\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] = {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21} \hspace{0.05cm},$$
$${\it \Gamma}_{2}(11) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(011), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(111)\right] = {\rm Min}\left[0.2+ 0.09, 1.2 + 0.64\right]\hspace{0.15cm}\underline {= 0.29} \hspace{0.05cm}.$$


(3)  The  first and last solutions  are correct:

  • The sequence  "$1011010$"  can be recognized from the continuous path:     "red – blue – red – red – blue – red – blue".
  • On the other hand,  no final statement can be made about the symbol  $a_8$  at time  $\nu = 8$:
  • Only under the hypothesis  $a_9 = 1$  and  $a_{\rm 10} = 1$  one would decide for  $a_8 = 0$,  under other hypotheses for  $a_8 = 1$.