Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.3Z: Moments for Triangular PDF

From LNTwww

Two triangular PDFs

We consider in this exercise two random signals  x(t)  and  y(t)  each with triangular PDF,  namely

  • the one-sided triangular PDF according to the upper graph:
fx(x)={0.5(1x/4)for0x4,0else.
  • the two-sided triangular PDF according to the graph below:
fy(y)={0.25(1|y|/4)for4y4,0else.

To solve this problem,  consider the equation for the central moments:

μk=kκ=0(kκ)mk(m1)kκ.

Specifically,  this equation yields the following results:

μ1=0,μ2=m2m21,μ3=m33m2m1+2m31,
μ4=m44m3m1+6m2m213m41.

From the central moments of higher order one can derive among others:

  • the  "Charlier's skewness"  S=μ3/σ3,
  • the  "kurtosis"  K=μ4/σ4.



Hints:



Questions

1

Calculate from the present PDF  fx(x)  the  k-th order moment.  What value results for the linear mean  mx=m1?

mx = 

2

What is the second moment and the rms  σx  of the random variable  x?

σx = 

3

For random variable  x:  What is the Charlier's skewness  Sx=μ3/σ3x?  Why is  Sx0?

Sx = 

4

Which statements are true for the symmetrically distributed random variable  y?

All moments with odd  k  are  mk=0.
All moments with even  k  are  mk=0.
All moments  mk  with even  k  are calculated as in subtask  (1).
The central moments   μk  are equal to the non-centered moments  mk.

5

Calculate the standard deviation of the random variable  y.

σy = 

6

What is the kurtosis  Ky  of the random variable  y?  Interpret the result.

Ky = 


Solution

(1)  For the  k–th order moment of the random variable  x  holds:

mk=1/240xk(1x4)dx.
  • This leads to the result:
mk=xk+12(k+1)|40xk+28(k+2)|40=24k(k+1)(k+2).
  • From this we obtain for the linear mean  (k=1):
mx=4/3=1.333_.


(2)  The  (k=2)  is  m2=8/3.

  • From this follows with  "Steiner's theorem":
σ2x=8/3(4/3)2=8/9σx0.943_.


(3)  With  m1=4/3,  m2=8/3  and  m3=32/5,  the given equation for the third order central moment gives:   μ3=64/1350.474.

  • From this follows for the  "Charlier's skewness":
Sx=64/135(8/9)3=850.566_.
  • Due to the asymmetric PDF:  Sx0.



(4)  Correct are  the proposed solutions 1, 3 and 4:

  • For symmetric PDF,  all odd moments are zero,  including the mean  my.
  • Therefore,  according  y:  There is no difference between the moments  mk  and the central moments  μk.
  • The moments  mk  with even  k  are the same for the random variables  x  and  y.  This is evident from the time averages:
  • Since  x2(t)=y2(t),  for  k=2n  the moments are equal too:
mk=m2n= ...[x2(t)]ndx= ...[y2(t)]ndy.


(5)  With the result of the subtask  (2)  holds:

m2=μ2=σ2y=8/3=2.667σy=1.633_.


(6)  For symmetrical PDF,  the fourth-order central moment is equal to the moment  m4.

  • From the general equation calculated in subtask  (1)  one obtains  μ4=256/15.
  • From this follows for the kurtosis:
Ky=μ4σ4y=256/15(8/3)2=2.4_.
Note:   This numerical value is valid for the triangle PDF in general and lies between the kurtosis values of the uniform distribution  (K=1.8)  and the Gaussian distribution  (K=3). This is a quantitative evaluation of the fact that here
  • the outliers are more pronounced than in the case of a uniformly distributed random size,
  • but due to the limitation less pronounced than with Gaussian sizes.
  • Then we will prove that the asymmetric triangular PDF  fx(x)  has the same kurtosis as shown in the upper sketch on the data sheet:
μ4=m44m3m1+6m2m213m41=25615432543+683(43)23(43)4=256159
  • With the result of the subtask  (3)    ⇒   σ2x=8/9  it follows:
Kx=256/(159)8/98/9=2.4.