Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.2: AM/PM Oscillations

From LNTwww

Two possible AM/PM oscillations

We consider the signal set   {si(t)}   with the indexing variable  i=1, ...M.  All signals  si(t)  can be represented in the same way:

si(t)={Aicos(2πfTt+ϕi)00t<T,otherwise.

The signal duration  T  is an integer multiple of  1/fT,  where  fT  is the signal frequency  ("carrier frequency").

  • For the sketch,  the duration of the energy-limited signals is  T=4/fT,  i.e. exactly four oscillations are recognized within  T  in each case.
  • The individual signals  si(t)  differ in amplitude  (Ai)  and/or phase  (ϕi).


For the two signals  (shown in the graph)  holds:

s1(t) = Acos(2πfTt),
s2(t) = 2Acos(2πfTt+π/4).

If we first restrict ourselves to these two signals  s1(t)  and  s2(t),  they can be completely described by the basis functions  φ1(t)  and  φ2(t).  These are orthonormal to each other,  that is,  taking into account the time constraint on  T  holds:

T0φ21(t)dt=T0φ22(t)dt=1,
T0φ1(t)φ2(t)dt=0.

With these basis functions,  the two signals can be represented as follows:

s1(t) = s11φ1(t),
s2(t) = s21φ1(t)+s22φ2(t).

In subtask  (7)  we want to check whether all signals  si(t)  according to the above definition   (with arbitrary amplitude  Ai  and arbitrary phase  ϕi)   can be described by the following equation:

si(t)=si1φ1(t)+si2φ2(t).

The basis functions  φ1(t)  and  φ2(t)  are to be found here by the   "Gram–Schmidt process",   which was described in detail in the theory section.  The required equations are summarized here again:

φ1(t)=s1(t)||s1(t)||withs11=||s1(t)||=T0s21(t)dt,s21=<s2(t),φ1(t)>=T0s2(t)φ1(t)dt,
θ2(t)=s2(t)s21φ1(t),φ2(t)=θ2(t)||θ2(t)||.



Notes:

  • For abbreviation,  use the energy  E=1/2A2T.
  • Furthermore,  the following trigonometric relation is given:  
cos(α±β)=cos(α)cos(β)sin(α)sin(β).


Questions

1

What is the energy and the  "2–norm"  of the signal  s1(t),  expressed by  E?

E1 = 

 E
||s1(t)|| = 

 E

2

What is the Gram–Schmidt basis function  φ1(t)

φ1(t)=Ecos(2πfTt),
φ1(t)=cos(2πfTt),
φ1(t)=2/Tcos(2πfTt).

3

What is the relationship between  s1(t)  and  φ1(t)?

s1(t)=Eφ1(t),
s1(t)=Aφ1(t),
s1(t)=2/Tφ1(t).

4

What is the  "inner product"  s21=s2(t)φ1(t)?

s21 = 

 E

5

What is the auxiliary function  θ2(t)?

θ2(t)=+2Asin(2πfTt),
θ2(t)=2Asin(2πfTt),
θ2(t)=2/Tsin(2πfTt).

6

Give the coefficients of   s2(t)=s21φ1(t)+s22φ2(t)

s21 = 

 E
s22 = 

 E

7

Which of the statements are generally true for the basis functions of the signal set  {si(t)}  with  i=1,  ... ,M,  if  M2?

The number of basis functions is always  N=M.
The number of basis functions is always  N=2.
Possible basis functions are cosine and (minus) sine.


Solution

(1)  The energy can be calculated using the following equation:

E1 = T0A2cos2(2πfTt)dt=A2T2+A22T0cos(4πfTt)dt=A2T2=1E_.
  • Here it is considered that  T  is an even multiple of  1/fT,  so the second integral vanishes.
  • Further:
||s1(t)||=E1=E=1E_.


(2)  Solution 3  is correct:  The basis function  φ1(t)  is equal in form to  s1(t),  where holds:

φ1(t)=s1(t)||s1(t)||=Acos(2πfTt)E=Acos(2πfTt)1/2A2T=2/Tcos(2πfTt).


(3)  Solution 1  is correct  since according to the equation given in  (2):

s1(t)=||s1(t)||φ1(t)=Eφ1(t).


(4)  Using the signal  s2(t)  according to the given information,  the basis function  φ1(t)  according to subtask  (2)  and the given trigonometric relation we get:

s21 = <s2(t),φ1(t)>=T02Acos(2πfTt+π/4)2/Tcos(2πfTt)dt=
s21=8A2TT0cos(π/4)cos2(2πfTt)dt8A2TT0sin(π/4)sin(2πfTt)cos(2πfTt)dt.
  • The second component yields the value  0  (orthogonality).  The first component yields:
s21=8A2T12T2=A2T=2E=1.414E_.


(5)  According to the Gram–Schmidt process,  we obtain

θ2(t) = s2(t)s21φ1(t)=2Acos(2πfTt+π/4)A2T2/Tcos(2πfTt)
θ2(t)=2Acos(π/4)cos(2πfTt)2Asin(π/4)sin(2πfTt)2Acos(2πfTt).
  • With  cos(π/4)=sin(π/4)=0.5  it follows:
θ2(t)=2Asin(2πfTt).
  • Therefore,  solution 2 is correct.


(6)  Analogous to subtask  (2),  the orthonormal basis function  φ2(t)  is given by

φ2(t)=θ2(t)||θ2(t)||=2/Tsin(2πfTt).
  • Thus,  the signal  s2(t)  can be represented by  s21  according to subtask  (4)  as follows:
s2(t) = s21φ1(t)+s22φ2(t),s21==1.414E_,
s22 = θ2(t)φ2(t)=2Asin(2πfTt)2/Tsin(2πfTt)=21/2A2T=1.414E_.


(7)  We consider very many energy-limited signals  (M2)  of the following form:

si(t)={Aicos(2πfTt+ϕi)00t<T,otherwise.

The indexing variable can take the values  i=1,2, ... ,M.  Then holds:

  • All  M  signals can be completely described by only  N=2  basis functions:
si(t)=si1φ1(t)+si2φ2(t).
  • If one proceeds according to the Gram–Schmidt process,  one obtains for the two basis functions
φ1(t) = 2/Tcos(2πfTt+ϕ1),φ2(t)=2/Tcos(2πfTt+ϕ1±π/2).
  • The sign in the argument of the second cosine function  (±π/2)  is not unique.  Rather,  the sign of  si2  also depends on whether the plus sign or the minus sign was used for  φ2(t).
  • However,  possible basis functions that then lead to other coefficients are also:
φ1(t) = 2/Tcos(2πfTt),φ2(t)±2/Tsin(2πfTt).

⇒   So the  solutions 2 and 3  are correct.