Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.4: About the Quantization Noise

From LNTwww

Quantization error with sawtooth input

To calculate the quantization noise power  PQ  we assume a periodic sawtooth-shaped source signal  q(t)  with value range  ±qmax  and period duration  T0 .

  • In the mean time domain  T0/2tT0/2  holds:   q(t)=qmax(2t/T0).
  • We refer to the power of the signal  q(t)  here as the transmit power  PS.


The signal  q(t)  is quantized according to the graph with  M=6  steps.  The quantized signal is  qQ(t),  where:

  • The linear quantizer is designed for the amplitude range  ±Qmax  such that each quantization interval has width  {\it Δ} = 2/M \cdot Q_{\rm max}.
  • The diagram shows this fact for  Q_{\rm max} = q_{\rm max} = 6 \ \rm V.  These numerical values shall be assumed up to and including the subtask  (5).


The  "quantization noise power"  is defined as the second moment of the difference signal  ε(t) = q_{\rm Q}(t) - q(t).  It holds:

P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},

where the time  T_0'  is to be chosen appropriately.  The  "quantization SNR"  is the ratio    \rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm},  which is usually given logarithmically  (in dB).





Hints:



Questions

1

Calculate the signal power  P_{\rm S}  (referred to the resistor 1 \ \rm Ω).

P_{\rm S} \ = \

\ \rm V^2

2

Which statements are true for the error signal  ε(t)= q_{\rm Q}(t)-q(t) ?

ε(t)  has a sawtooth shape.
ε(t)  has a step-like progression.
ε(t)  is restricted to the range  ±{\it Δ}/2 = ±1 \ \rm V.
ε(t)  has period  T_0' = T_0/M.

3

What is the quantization noise power  P_{\rm Q}  for  M=6?

P_{\rm Q} \ = \

\ \rm V^2

4

Calculate the quantization noise ratio for  M = 6.

10 \cdot \lg \ ρ_{\rm Q} \ = \

\ \rm dB

5

What values result from quantization with  N = 8  or  N = 16 bits?

N = 8\text{:}\hspace{0.35cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \

\ \rm dB
N = 16\text{:}\hspace{0.15cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \

\ \rm dB

6

What conditions must be met for the derived equation to apply to  ρ_{\rm Q}?

All amplitude values are equally probable.
A linear quantizer is present.
The quantizer is exactly matched to the signal  (Q_{\rm max} = q_{\rm max}).


Solution

(1)  The signal power  P_{\rm S}   is equal to the second moment of  q(t) if the reference resistance  1 \rm Ω  is used and therefore the unit  \rm V^2  is accepted for the power.

  • Due to periodicity and symmetry,  averaging over the time domain  T_0/2  is sufficient:
P_{\rm S} = \frac{1}{T_0/2} \cdot \int_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.
  • Here the substitution  x = 2 - t/T_0  was used.  With  q_{\rm max} = 6 \ \rm V  one gets  P_\rm S\hspace{0.15cm}\underline { = 12 \ V^2}.


Error signal for  Q_{\rm max} = q_{\rm max}

(2)  Correct are  suggested solutions 1, 3, and 4:

  • We assume here  Q_{\rm max} = q_{\rm max} = 6 \ \rm V.
  • This gives the sawtooth-shaped error signal  ε(t)  between  ±1\ \rm V.
  • The period duration is  T_0' = T_0/6.


(3)  The error signal  ε(t)  proceeds in the same way as  q(t)  sawtooth.

  • Thus,  the same equation as in subtask  (1)  is suitable for calculating the power.
  • Note,  however,  that the amplitude is smaller by a factor  M  while the different period duration does not matter for the averaging:
P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.


(4)  The results of the subtasks  (1)  and  (3)  lead to the quantization SNR:

\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.


(5)  With  M = 2^N  we obtain in general:

\rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} =20 \cdot {\rm lg}\hspace{0.1cm}(2)\cdot N \approx 6.02\,{\rm dB} \cdot N .
  • This results in the special cases we are looking for:
N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},
N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.


Quantization with  Q_{\rm max} \ne q_{\rm max}

(6)  All of the above preconditions  must be satisfied:

  • For non-linear quantization,  the simple relation  ρ_{\rm Q} = M^2  does not hold.
  • For an PDF other than the uniform distribution  ρ_{\rm Q} = M^2  is also only an approximation,  but this is usually accepted.
  • If  Q_{\rm max} < q_{\rm max},  truncation of the peaks occurs,  while with  Q_{\rm max} > q_{\rm max}  the quantization intervals are larger than required.


The graph shows the error signals  ε(t) 

  1. for  Q_{\rm max} > q_{\rm max}  (left)
  2. and  Q_{\rm max} < q_{\rm max}  (right):


In both cases,  the quantization noise power is significantly larger than calculated in sub-task  (3).