Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.4Z: Signal-to-Noise Ratio with PCM

From LNTwww

Signal-to-noise ratio of PCM 30/32 compared to ZSB amplitude modulation

The graph shows the signal-to-noise ratio  10 ⋅ \lg \ ρ_v  for pulse code modulation  \rm (PCM)  compared to analog double-sideband amplitude modulation, abbreviated as  "\rm DSB-AM". 

For the latter,   ρ_v = ξ,  where the persormanc parameter

\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}}

summarizes the following system parameters:

  • the frequency-independent attenuation factor  α  of the transmission channel,
  • the power  P_{\rm S}  of the transmitted signal  s(t),&nbsp, also called  "transmit power"  for short,
  • the message frequency  f_{\rm N}  (bandwidth)  of the cosine source signal  q(t),
  • the noise power density  N_0  of the AWGN noise.


For the PCM system,  the following approximation for the sink SNR was given in the section  "Estimation of SNR degradation due to bit errors",  which also takes into account transmission errors due to AWGN noise:

\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.
  • Here  N  denotes the number of bits per sample and  p_{\rm B}  the bit error probability.
  • Since  ξ  can in digital modulation also be interpreted as the  "signal energy per bit"  related to the  "noise power density"  (E_{\rm B}/N_0),  with the complementary Gaussian error signal  {\rm Q}(x)  approximately:
p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.



Hints:


Questions

1

How many bits per sample   ⇒   N = N_1  does the PCM system under consideration use?

N_1 \ = \

2

How many bits per sample   ⇒   N = N_2  would have to be used to achieve  10 ⋅ \lg \ ρ_v > 64 \ \rm dB  ("music quality")?

N_2 \ = \

3

What  (logarithmized)  performance parameter  ξ_{40\ \rm dB}  is required for 8-bit PCM to have a signal-to-noise ratio of  40\ \rm dB ?

10 ⋅ \lg \ ξ_{40\ \rm dB} \ = \

\ \rm dB

4

By what factor could the transmit power be reduced for PCM compared to  "DSB-AM"  to still achieve  10 ⋅ \lg \ ρ_v = 40\ \rm dB ?

K_\text{AM → PCM} \ = \

5

What is the bit error probability  p_{\rm B}  for  10 ⋅ \lg \ ξ = 6\ \rm dB  and  N = N_1   ⇒   result of the subtask  (1)?

p_{\rm B} \ = \

\ \%

6

What would be the SNR for the same  ξ  with a 3-bit PCM   ⇒   N = 3 ?

10 ⋅ \lg \ ρ_v \ = \

\ \rm dB


Solution

(1)  The horizontal section of the PCM curve is determined by the quantization noise alone. 

  • Here,  with the quantization step number  M = 2^N:
\rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.
  • From the readable signal-to-noise ratio  10 ⋅ \lg \ ρ_v ≈ 48 \ \rm dB  it follows:
      N_1\hspace{0.15cm}\underline { = 8}  bits per sample and for the quantization level number  M = 256.


(2)  From the above approximation,  we obtain for  N_2\hspace{0.15cm}\underline { = 11}  bits per sample   ⇒   M = 2048  the signal-to-noise ratio  66 \ \rm dB.

  • With  N = 10   ⇒   M = 1024  one reaches only approx.  60 \ \rm dB.
  • For the compact disc  \rm (CD),  the PCM parameters  N = 16   ⇒   M = 65536   ⇒   10 ⋅ \lg \ ρ_v > 96 \ \rm dB  are used.


(3)  For double-sideband amplitude modulation  \rm (DSB-AM),  this would require  10 ⋅ \lg \ ξ = 40\ \rm dB .

  • As can be seen from the graph in the data section,  this abscissa value for the given PCM is lower by  30 \ \rm dB ⇒  10 ⋅ \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}.


(4)  The logarithmic value  30 \ \rm dB  corresponds to a power reduced by a factor  10^3\hspace{0.15cm}\underline { = 1000}  .


(5)  From the graph in the information section,  it can be seen that the abscissa value  10 ⋅ \lg \ ξ= 6 \ \rm dB  results in the signal-to-noise ratio  20 \ \rm dB.

  • From  10 ⋅ \lg \ ρ_v = 20 \ \rm dB  follows  ρ_v = 100  and thus further  (with  N = N_1 = 8):
\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.


(6)  With the same performance parameter  ξ,  the bit error probability is still  p_{\rm B} = 0.025.  Thus, with  N = 3  (bits per sample):

\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.

Further,  it should be noted:

  • With only three bits per sample,  the quantization noise power  (P_{\rm Q} = 0.015625)  is already larger than the error noise power  (P_{\rm E} = 0.01).
  • By increasing the transmit power,  the signal-to-noise ratio could be maximum  10 ⋅ \lg \ ρ_v =18 \ \rm dB  because of quantization, if no bit errors occur  (P_{\rm E} = 0).