Aufgabe 4.7: Gewichtete Summe und Differenz

From LNTwww

Summe und Differenz von Zufallsgrößen

Die Zufallsgrößen  $u$  und  $v$  seien statistisch voneinander unabhängig, jeweils mit Mittelwert  $m$  und Varianz  $\sigma^2$.

  • Beide Größen besitzen gleiche WDF und VTF.
  • Über den Verlauf dieser Funktionen sei zunächst nichts bekannt.


Es werden nun zwei neue Zufallsgrößen  $x$  und  $y$  entsprechend den nachfolgenden Gleichungen gebildet:

$$x = A \cdot u + B \cdot v,$$
$$y= A \cdot u - B \cdot v.$$

Hierbei bezeichnen  $A$  und  $B$  (beliebige) konstante Werte.

  • Für die Teilaufgaben  (1)  bis  (4)  gelte   $m= 0$,   $\sigma = 1$,   $A = 1$  und  $B = 2$.
  • Bei der Teilaufgabe  (6)  wird vorausgesetzt, dass  $u$  und  $v$  jeweils gaußverteilt mit Mittelwert  $m= 1$  und Streuung  $\sigma = 0.5$  seien. Für die Konstanten gelte hier   $A = B = 1$.
  • Für die Aufgabe  (7)  gelte weiterhin  $A = B = 1$.  Hier seien die Zufallsgrößen  $u$  und  $v$  symmetrisch zweipunktverteilt auf  $\pm$1:
$${\rm Pr}(u=+1) = {\rm Pr}(u=-1) = {\rm Pr}(v=+1) = {\rm Pr}(v=-1) =0.5.$$





Hinweis:



Fragebogen

1

Wie groß sind Mittelwert und Streuung von  $x$  für  $A = 1$  und  $B = 2$?

$m_x \ = \ $

$\sigma_x \ = \ $

2

Wie groß sind Mittelwert und Streuung von  $y$  für  $A = 1$  und  $B = 2$?

$m_y \ = \ $

$\sigma_y \ = \ $

3

Berechnen Sie die Kovarianz  $\mu_{xy}$.  Welcher Wert ergibt sich für  $A = 1$  und  $B = 2$?

$\mu_{xy} \ = \ $

4

Berechnen Sie den Korrelationskoeffizienten  $\rho_{xy}$  in Abhängigkeit des Quotienten  $B/A$.  Welcher Koeffizient ergibt sich für  $A = 1$  und  $B = 2$?

$\rho_{xy}\ = \ $

5

Welche der folgenden Aussagen gelten immer?

Für  $B = 0$  sind die Zufallsgrößen  $x$  und  $y$  streng korreliert.
Es gilt  $\rho_{xy}(-B/A) = -\rho_{xy}(B/A)$.
Im Grenzfall  $B/A \to \infty$  sind die Zufallsgrößen  $x$  und  $y$  streng korreliert.
Für  $A =B$  sind die Zufallsgrößen  $x$  und  $y$  unkorreliert.

6

Welche Aussagen sind zutreffend, wenn  $A =B = 1$  gilt und  $x$  und  $y$  jeweils gaußverteilt sind mit Mittelwert  $m = 1$  und Streuung  $\sigma = 0.5$ ?

Die Zufallsgrößen  $x$  und  $y$  sind unkorreliert.
Die Zufallsgrößen  $x$  und  $y$  sind statistisch unabhängig.

7

Welche Aussagen treffen zu, wenn  $x$  und  $y$  symmetrisch zweipunktverteilt sind und  $A =B = 1$  gilt?

Die Zufallsgrößen  $x$  und  $y$  sind unkorreliert.
Die Zufallsgrößen  $x$  und  $y$  sind statistisch unabhängig.


Musterlösung

(1)  Da die Zufallsgrößen  $u$  und  $v$  mittelwertfrei sind  $(m = 0)$, ist auch die Zufallsgröße  $x$  mittelwertfrei:

$$m_x = (A +B) \cdot m \hspace{0.15cm}\underline{ =0}.$$
  • Für die Varianz und die Streuung gelten:
$$\sigma_x^2 = (A^2 +B^2) \cdot \sigma^2 = 5; \hspace{0.5cm} \sigma_x = \sqrt{5}\hspace{0.15cm}\underline{ \approx 2.236}.$$


(2)  Da  $u$  und  $v$  die gleiche Streuung besitzen, gilt auch  $\sigma_y =\sigma_x \hspace{0.15cm}\underline{ \approx 2.236}$.

  • Wegen  $m=0$  gilt zudem  $m_y = m_x \hspace{0.15cm}\underline{ =0}.$
  • Bei mittelwertbehafteten Zufallsgrößen  $u$  und  $v$  ergäbe sich dagegen für  $m_y = (A -B) \cdot m$  ein anderer Wert als für  $m_x = (A +B) \cdot m$.


(3)  Wir gehen hier in der Musterlösung von dem allgemeineren Fall  $m \ne 0$  aus.  Dann gilt für das gemeinsame Moment:

$$m_{xy} = {\rm E} \big[x \cdot y \big] = {\rm E} \big[(A \cdot u + B \cdot v) (A \cdot u - B \cdot v)\big] . $$
  • Nach den allgemeinen Rechenregeln für Erwartungswerte folgt daraus:
$$m_{xy} = A^2 \cdot {\rm E} \big[u^2 \big] - B^2 \cdot {\rm E} \big[v^2 \big] = (A^2 - B^2)(m^2 + \sigma^2).$$
  • Damit ergibt sich die Kovarianz zu
$$\mu_{xy} = m_{xy} - m_{x} \cdot m_{y}= (A^2 - B^2)(m^2 + \sigma^2) - (A + B)(A-B) \cdot m^2 = (A^2 - B^2) \cdot \sigma^2.$$
  • Mit  $\sigma = 1$,  $A = 1$  und  $B = 2$  erhält man  $\mu_{xy} \hspace{0.15cm}\underline{ =-3}$  und zwar unabhängig vom Mittelwert  $m$  der Größen  $u$  und  $v$.


Korrelationskoeffizient in Abhängigkeit des Quotienten  $B/A$

(4)  Der Korrelationskoeffizient ergibt sich zu

$$\rho_{xy} =\frac{\mu_{xy}}{\sigma_x \cdot \sigma_y} = \frac{(A^2 - B^2) \cdot \sigma^2}{(A^2 +B^2) \cdot \sigma^2} \hspace{0.5 cm}\Rightarrow \hspace{0.5 cm}\rho_{xy} =\frac{1 - (B/A)^2} {1 +(B/A)^2}.$$
  • Mit  $B/A = 2$  folgt daraus  $\rho_{xy} \hspace{0.15cm}\underline{ =-0.6}$.


(5)  Richtig sind die Aussagen 1, 3 und 4:

  • Aus  $B= 0$  folgt  $\rho_{xy} = 1$  (strenge Korrelation).  Man erkennt weiter, dass in diesem Fall  $x = u$  und  $y = u$  identische Zufallsgrößen sind.
  • Die zweite Aussage ist nicht zutreffend:   Für  $A = 1$  und  $B= -2$  ergibt sich ebenfalls  $\rho_{xy} = -0.6$.
  • Das Vorzeichen des Quotienten spielt also keine Rolle, weil in der in der Teilaufgabe  (4)  berechneten Gleichung der Quotient  $B/A$  nur quadratisch auftritt.
  • Ist  $B \gg A$, so werden sowohl  $x$  als auch  $y$  fast ausschließlich durch die Zufallsgröße  $v$  bestimmt und es ist  $ y \approx -x$.  Dies entspricht dem Korrelationskoeffizienten  $\rho_{xy} = -1$.
  • Dagegen ergibt sich für  $B/A = 1$  stets der Korrelationskoeffizient  $\rho_{xy} = 0$  und damit die Unkorreliertheit zwischen  $x$  und  $y$.


(6)  Beide Aussagen richtig sind richtig:

  • Bei  $A=B$  sind  $x$  und  $y$  stets  $($also bei jeder beliebigen WDF der Größen  $u$  und  $v)$  unkorreliert.
  • Die neuen Zufallsgrößen  $x$  und  $y$  sind hier also ebenfalls gaußverteilt.
  • Bei Gaußschen Zufallsgrößen folgt aber aus der Unkorreliertheit auch die statistische Unabhängigkeit und umgekehrt.


2D-WDF und Rand-WDF

(7)  Hier ist nur die Aussage 1 zutreffend:

  • Der Korrelationskoeffizient ergibt sich mit  $A=B= 1$  auch hier zu  $\rho_{xy} = 0$.  Das heißt:  $x$  und  $y$  sind auch hier unkorreliert.
  • Dagegen erkennt man aus der skizzierten 2D-WDF, dass die Bedingung der statistischen Unabhängigkeit im nun vorliegenden Fall nicht mehr gegeben ist.  Vielmehr gilt nun:
$$f_{xy}(x, y) \ne f_{x}(x) \cdot f_{y}(y).$$