Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.7Z: About the Water Filling Algorithm

From LNTwww

Water-filling principle  (K=4)

We consider  K  parallel Gaussian channels  (AWGN)  with different interference powers  σ2k,  where  1kK .  The graph illustrates this constellation using  K=4  as an example.

The transmission power in the individual channels is denoted by  Pk,  the sum of which must not exceed the specified value PX :

P1+...+PK=Kk=1E[X2k]PX.

If the random variables  X1, ... , XK  are Gaussian, then for the (total) mutual information between the input  X  and the output  Y  can be written:

I(X1,...,XK;Y1,...,YK)=1/2Kk=1log2(1+Pkσ2k),Resultin"bit".

The maximum for this is the  channel capacity of the total system,  where the maximization refers to the division of the total power  PX  among the individual channels:

CK(PX)=max

This maximization can be done with the  "water–filling algorithm"  shown in the above graph for  K = 4.

In the present exercise, this algorithm is to be applied, assuming the following:

  • Two parallel Gaussian channels   ⇒   K = 2,
  • normalized noise powers   \sigma_1^2 = 1   and   \sigma_2^2 = 4,
  • normalized transmission powers   P_X = 10   and   P_X = 3 respectively.



Hints:


Questions

1

Which power allocation strategies are useful?

A very noisy channel  k  (with large noise power  \sigma_k^2)  should be allocated a large effective power  P_k.
A very noisy channel  k  (with large noise power  \sigma_k^2)  should be assigned only a small useful power  P_k.
For  K  equally good channels   ⇒   \sigma_1^2 = \text{...} = \sigma_K^2 = \sigma_N^2  the power  P_k  should be evenly distributed.

2

What is the mutual information obtained by distributing the transmission power  P_X = 10  equally to both channels   (P_1= P_2 = 5)?

I(X_1, X_2; Y_1, Y_2) \ = \

\ \rm bit

3

Let  P_X = P_1 + P_2 = 10  be further valid.  Which optimal power distribution results according to the  "water–filling algorithm"?

P_1 \ = \

P_2 \ = \

4

What is the channel capacity for  \underline{K = 2}  and  \underline{P_X = 10}?

C \ = \

\ \rm bit

5

What mutual information results if the transmit power  P_X = 3  is distributed equally to both channels   (P_1= P_2 = 1.5)?

I(X_1, X_2; Y_1, Y_2) \ = \

\ \rm bit

6

What is the channel capacity for  \underline{K = 2}  and  \underline{P_X = 3}?

C \ = \

\ \rm bit


Solution

(1)  Proposed solutions 2 and 3  are correct:

  • According to the explanations in the theory section  "Water–Filling"   ⇒   Proposal 2  is to be applied when unequal conditions exist.
  • However,  solution proposal 3  is also correct:   If the channels are equally good, there is nothing to prevent all  K  channels from being filled with the same power   ⇒    P_1 = P_2 =  ...  = P_K = P_X/K.


(2)  For the mutual information, with equal power distribution, the following applies:

I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) \ = \ {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit} \hspace{0.15cm}\underline{= 1.877\,{\rm bit}} \hspace{0.05cm}.


Best possible distribution of transmit power  P_X = 10

(3)  According to the adjacent sketch, the following must apply:

P_2 = P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3\hspace{0.3cm}\text{wobei }\hspace{0.3cm}P_1 + P_2 = P_X = 10
\Rightarrow \hspace{0.3cm} P_1 + (P_1 -3) = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot P_1 = 13 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{P_1 = 6.5}\hspace{0.05cm}, \hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.

For the  "water level height"  here holds: 

H= P_1 + \sigma_1^2= P_2 + \sigma_2^2 = 7.5 = 6.5+1 = 3.5+4.


(4)  The channel capacity indicates the maximum mutual information.   The maximum is already fixed by the best possible power sharing according to subtask (3). For  P_X = 10  holds:

C={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )
\Rightarrow\hspace{0.3cm} C=1.453\,{\rm bit}+ 0.453\,{\rm bit} \hspace{0.15cm}\underline{= 1.906\,{\rm bit}} \hspace{0.05cm}.


(5)  For  P_X = 3,   with the same power splitting  (P_1 = P_2 =1.5),  we obtain:

I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right ) \hspace{0.15cm}\underline{= 0.891\,{\rm bit}} \hspace{0.05cm}.


Best possible distribution of the transmit power  P_X = 3

(6)  According to the water–filling algorithm, the total transmission power  P_X = 3  is now fully allocated to the first channel:

{P_1 = 3}\hspace{0.05cm}, \hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.
  • So here for the  "water level height": 
H= 4= P_1 + \sigma_1^2= P_2 + \sigma_2^2= 3+1=0+4.
  • This gives for the channel capacity:
C ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit} \hspace{0.15cm}\underline{= 1\,{\rm bit}} \hspace{0.05cm}.

Further notes:

  • While for  P_X = 10  the difference between even and best power splitting was only  0.03  bit, for  P_X = 3  the difference is larger:  0.109  bit.
  • For even larger  P_X > 10 , the difference between even and best power splitting becomes even smaller.


For example, for  P_X = 100  the difference is only   0.001  bit as the following calculation shows:

  • For  P_1 = P_2 = 50  one obtains:
I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit} \hspace{0.15cm}\underline{= 4.713\,{\rm bit}} \hspace{0.05cm}.
  • In contrast, the best possible split gives   ⇒   P_1 = 51.5, \ P_2 = 48.5:
C = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit} \hspace{0.15cm}\underline{= 4.714\,{\rm bit}} \hspace{0.05cm}.