Exercise 5.4: Sine Wave Generator

From LNTwww
(Redirected from Aufgabe 5.4: Sinusgenerator)

Proposed filter structure

The diagram shows a second-order digital filter suitable for generating a discrete-time sinusoidal function on a digital signal processor  $\rm (DSP)$,  for example:

$$\left\langle \hspace{0.05cm}{y_\nu }\hspace{0.05cm} \right\rangle = \left\langle {\, \sin ( {\nu T \cdot \omega _0 } )\, }\right\rangle .$$
  • It is assumed that the input sequence  $\left\langle \hspace{0.05cm} {x_\nu } \hspace{0.05cm}\right\rangle$  describes a  (discrete-time)  Dirac delta function.  Thus,  all output values  $y_\nu$  are simultaneously identical to zero for times  $\nu\lt 0$. 
  • The total of five filter coefficients result from the  $Z$-transform:
$$Z \{ {\sin ( {\nu T \omega _0 } )} \} = \frac{{z \cdot \sin \left( {\omega _0 T} \right)}}{{z^2 - 2 \cdot z \cdot \cos \left( {\omega _0 T} \right) + 1}}.$$
  • Substituting this equation by a recursive second order filter  $(M = 2)$,  we obtain the following filter coefficients:
$$a_0 = 0,\quad a_1 = \sin \left( {\omega _0 T} \right),\quad a_2 = 0, \quad b_1 = 2 \cdot \cos \left( {\omega _0 T} \right),\quad b_2 = - 1.$$

In the diagram it is already marked by the lighter border that the filter coefficients  $a_0$  and  $a_2$  can be omitted.



Notes:

  • The exercise belongs to the chapter   Digital Filters  in this book.
  • The HTML5/JavaScript applet  "Digital Filters"  illustrates the subject matter of this chapter.
  • For the subtasks  (1)  to  (3)  the following apply:
$$a_1 = 0.5,\quad b_1 = \sqrt 3 .$$


Questions

1

Let  $a_1 = 0.5$  and  $b_1 = \sqrt 3 $.  Calculate the initial values  $y_\nu$  at time points  $\nu = 0$,  $\nu = 1$  and  $\nu = 2$.

$y_0 \ = \ $

$y_1 \ = \ $

$y_2 \ = \ $

2

What is the initial value  $y_\nu$  for  $\nu \ge 2$  in general?  Calculate the values  $y_3$, ... , $y_7$  and enter  $y_7$  as a check.

$y_7 \ = \ $

3

How many grid points  $(T_0/T)$  represent a period  $(T_0)$? 

$T_0/T\ = \ $

4

Now  $T = 1 \hspace{0.05cm} \rm µ s$  is valid.  How must the coefficients  $a_1$  and  $b_1$  be selected so that a  $\text{10 kHz}$ sine wave is generated?

$a_1 \ = \ $

$b_1 \ = \ $


Solution

(1)  The  "$1$"  at the input affects  $($because of  $a_0= 0)$  at the output only at the time  $\nu = 1$: 

$$y_0 \hspace{0.15cm} \underline{= 0},\quad y_1 \hspace{0.15cm} \underline{ = 0.5}.$$
  • At  $\nu = 2$,  the recursive part of the filter also takes effect:
$$y_2 = b_1 \cdot y_1 - y_0 = {\sqrt 3 }/{2} \hspace{0.15cm} \underline{ \approx 0.866}.$$


(2)  For  $\nu \ge 2$,   the filter is purely recursive:

$$y_\nu = b_1 \cdot y_{\nu - 1} - y_{\nu - 2} .$$
  • In particular,  one obtains
$$y_3 = \sqrt 3 \cdot y_2 - y_1 = \sqrt 3 \cdot {\sqrt 3 }/{2} - {1}/{2} = 1;$$
$$y_4 = \sqrt 3 \cdot y_3 - y_2 = \sqrt 3 \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};$$
$$y_5 = \sqrt 3 \cdot y_4 - y_3 = \sqrt 3 \cdot {\sqrt 3 }/{2} - 1 = {1}/{2};$$
$$y_6 = \sqrt 3 \cdot y_5 - y_4 = \sqrt 3 \cdot {1}/{2} - {\sqrt 3 }/{2} = 0;$$
$$y_7 = \sqrt 3 \cdot y_6 - y_5 = \sqrt 3 \cdot 0 - {1}/{2} \hspace{0.15cm} \underline{= - 0.5}.$$


(3)  By continuing the recursive algorithm of subtask  (2),  we obtain for large  $\nu$–values:  

$$y_\nu = y_{\nu - 12} .$$
  • From this follows  $T_0/T\hspace{0.15cm} \underline{= 12}$.  The same result is obtained by the following considerations:
$$a_1 = \sin \left( {\omega _0 \cdot T} \right) = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right)\mathop = \limits^! {1}/{2} = \sin \left( {{{\rm{\pi }}}/{6}} \right) \;\;{\rm \Rightarrow} \;\;{2T}/{T_0 } = {1}/{6}\quad \Rightarrow \;\;{T_0 }/{T} = 12.$$
  • Checking the coefficient  $b_1$  confirms the calculation:
$$b_1 = 2 \cdot \cos \left( {{{\rm{\pi }}}/{6}} \right) = 2 \cdot {\sqrt 3 }/{2} = \sqrt 3 .$$


(4)  From  $f_0 = 10 \hspace{0.15cm} \rm kHz$  follows  $T_0 = 100 \hspace{0.05cm} \rm µ s$  or  $T_0/T = 100$ . This gives:

$$a_1 = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = \sin \left( {3.6^ \circ } \right) \hspace{0.15cm} \underline{\approx 0.062},$$
$$b_1 = 2 \cdot \cos \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = 2 \cdot \cos \left( {3.6^ \circ } \right) \hspace{0.15cm} \underline{\approx 1.996}.$$