Exercise 1.2Z: Measurement of the Frequency Response
For the metrological determination of the filter frequency response a sinusoidal input signal with an amplitude of 2V and given frequency f0 is applied. The output signal y(t) or its spectrum Y(f) are then determined according to magnitude and phase.
- The magnitude spectrum at the output of filter A with frequency f0=1 kHz is:
- |YA(f)|=1.6V⋅δ(f±f0)+0.4V⋅δ(f±3f0).
- For another filter B the output signal is always a harmonic oscillation with the (single) frequency f0. For the frequencies f0 given in the table the amplitudes Ay(f0) and the phases φ_y(f_0) are measured. Here, the following holds:
- Y_{\rm B} (f) = {A_y}/{2} \cdot {\rm e}^{ {\rm j} \varphi_y} \cdot {\rm \delta } (f + f_0) + {A_y}/{2} \cdot {\rm e}^{ -{\rm j} \varphi_y} \cdot {\rm \delta } (f - f_0).
In the exercise, filter \rm B should be given in the form:H_{\rm B}(f) = {\rm e}^{-a_{\rm B}(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_{\rm B}(f)}.
Here,
- a_{\rm B}(f_0) denotes the damping curve, and
- b_{\rm B}(f_0) the phase response.
Please note:
- The task belongs to the chapter System Description in Frequency Domain.
Questions
Solution
- For an LTI system, Y(f) = X(f) · H(f) holds.
- Therefore, it is not possible for a component with 3 f_0 to be present in the output signal if such a one is missing in the input signal.
- This means: There is no LTI system on hand and accordingly no frequency response can be specified.
(2) Approach 3 is correct:
- Based on the given numerical values for A_y(f_0) filter \rm B can be assumed to be a band-pass filter.
(3) With A_x = 2 \text{ V} and \varphi_x = 90^\circ (sine function) the following is obtained for f_0 = f_3 =3 \text{ kHz}:
- H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j} (\varphi_x - \varphi_y)} = \frac{1\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 90^{\circ})} = 0.5.
Thus, for f_0 = f_3 = 3 \text{ kHz} the values
- a_{\rm B} (f_3)\rm \underline{\: ≈ \: 0.693 \: Np} and
- b_{\rm B}(f_3) \rm \underline{\: = \: 0 \: (degree)} are determined.
(4) Analogously, the frequency response for f_0 = f_2 =2 \text{ kHz} can be determined:
- H_{\rm B} ( f_2) = \frac{0.8\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.
Hence, for f_0 = f_2 = 2 \ \text{ kHz}:
- a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np},
- b_{\rm B}(f_2) \rm \underline{\: = \: 20°}.
For f_0 = -f_2 =-\hspace{-0.01cm}2 \text{ kHz} the same damping value applies. However, the phase has the opposite sign. So, b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}.