Processing math: 100%

Exercise 2.6: GF(P power m). Which P, which m?

From LNTwww

Underlying tables for
addition and multiplication

A Galois field  GF(q)  with  q=Pm  elements defined by the adjacent tables is to be analyzed

  • for addition  (marked with "+"),  and
  • for multiplication  (marked with ")".


This Galois field   GF(q)={z0,z1,...,zq1}   satisfies all the requirements for a finite field listed in the chapter  "Some Basics of Algebra" . Thus,  commutative, associative and distributive laws are also satisfied.

Furthermore there is

  • a neutral element with respect to addition   ⇒   NA:
zjGF(q):zi+zj=zizj=NA(zeroelement),
  • a neutral element with respect to multiplication   ⇒   NM:
zjGF(q):zizj=zizj=NM(identityelement),
  • for all elements  zi  an additive inverse   ⇒   InvA(zi):
ziGF(q)InvA(zi)GF(q):
zi+InvA(zi)=NA="0"short:InvA(zi)=zi,
  • for all elements  zi  except the zero element a multiplicative inverse  ⇒  InvM(zi):
ziGF(q),ziNAInvM(zi)GF(q):
ziInvM(zi)=NM="1"short:InvM(zi)=z1i.


Hints:

  • In the tables,  the elements   z0,..., z8   are called  "coefficient vectors".
  • For example,  "21"  stands for  "2α+1".



Questions

1

Specify the parameters of the Galois field considered here.

P = 

m = 

q = 

2

What is the neutral element of addition?

The neutral element of addition is  NA= "00",
The neutral element of addition is  NA= "01".

3

What is the neutral element of multiplication?

The neutral element of multiplication is  NM= "00",
The neutral element of multiplication is  NM= "01".

4

What statements are true regarding additive inverses?

It holds  InvA("02") = "01",
It holds  InvA("11") = "22",
It holds  InvA("22") = "00".

5

Which of the following statements are true about the multiplication?

The multiplication is defined here modulo  p(α)=α2+2.
The multiplication is defined here modulo  p(α)=α2+2α+2.

6

What statements are true regarding multiplicative inverses?

There is a multiplicative inverse for all elements  ziGF(Pm)  .
It holds  InvM("12") ="10".
It holds  InvM("21") = "12".

7

Does  ("20" + "12") "12" ="20" "12" +"12" "12" hold?

Yes.
No.


Solution

(1)  Each element consists of two ternaries   ⇒   P=3_, m=2_.  There are  q=Pm=38=9elements_.


(2)  Correct is the  proposed solution 1:

  • The neutral element of the addition   (NA)  satisfies for all  ziGF(Pm)  the condition  zi+NA=zi.
  • From the addition table it can be read that  "00"  satisfies this condition.


(3)  Correct is the  proposed solution 2:

  • The neutral element of the multiplication   (NM)  must always satisfy the condition  ziNM=zi.
  • From the multiplication table,  NM="01".
  • In polynomial notation,  this corresponds to  k1=0  and  k0=1:
k1α+k0=1.


(4)  With the polynomial representation,  the following calculations result:

InvA("02") = InvA(2)=(2)mod3=1vector"01",
InvA("11") = InvA(α+1)=[(α)mod3]+[(1)mod3]=2α+2vector"22",
InvA("22") = InvA(2α+2)=[(2α)mod3]+[(2)mod3]=α+1vector"11".

Consequently,  only the  first two proposed solutions  are correct.

However,  the exercise can also be solved without calculation using the addition table alone:

  • For example,  you can find the inverse of  "22"  by looking for the column with the entry  "00"  in the last row.
  • You find the column labeled  "11"  and thus  InvA("22")="11".


(5)  Multiplying  α  (vector "10")  by itself gives  α2.

  • If the first proposed solution were valid,  the condition  α2+2=0  and thus  α2=(2)mod3=1,  thus yielding the vector  "01".
  • Assuming the second proposed solution,  it follows from the condition  α2+2α+2=0   in polynomial notation:
α2=[(2α)mod3]+[(2)mod3]=α+1
and thus the coefficient vector  "11".
  • In the multiplication table,  in row 4, column 4,  we find exactly the entry  "11"   ⇒   So,  the correct answert is the  proposed solution 2.


(6)  The multiplicative inverse to  "12"  can be found in row 6 of the multiplication table as the column with the entry  "01"  

  • So the  proposed solution 2  is correct in contrast to proposal 3.  Namely,  InvM("21")="20" holds.
  • We check these results considering  α2+2α+2=0  by multiplications:
"12""10"(α+2)α=α2+2α=(2α2)+2α=2mod3=1vector"01"multiplicativeinverse.
"21""12"(2α+1)(α+2)=2α2+α+4α+2=2α2+5α+2=2(2α2)+5α+2=(α2)mod3=α+1
 vector"11"nomultiplicativeinverse.
  • The solution suggestion 1 is therefore not correct,  because there is no multiplicative inverse for  "00".


(7)  The two expressions agree   ⇒   YES, as the following calculations show:

("20"+"12") "12" = "02""12" = "21",
"20""12"+"12""12" = "02"+"22" = "21".

This means:   The distributive law has been proved at least on a single example.