Exercise 3.13: Threshold Decision vs. DFE vs. Maximum Likelihood

From LNTwww

Bitte diese Aufgabe sehr genau kontrollieren. Da habe ich etliche Änderungen vorgenommen.

Error probabilities in comparison:
$\bullet$   Threshold Decision  $\rm (SE)$,
$\bullet$   Decision Feedback Equalization  $\text{(DFE)}$,
$\bullet$   Maximum Likelihood Detection   $\text{(ML)}$

Error probabilities of different receiver types are to be compared.  Considered are:

  • Threshold Decision  $($German:  "Schwellenwertentscheidung"   ⇒   "$\rm SE$"$)$   ⇒   error probability  $p_{\rm SE}$,
  • Decision Feedback Equalization  $\rm (DFE)$   ⇒   error probability  $p_{\rm DFE}$ and
  • Maximum Likelihood Detection  $\rm (ML)$     ⇒   error probability  $p_{\rm ML}$.


In the table given are four different parameter sets   $\rm A$,  $\rm B$,  $\rm C$  and  $\rm D$:

  • The  "main value"  $g_0$  of the basic detection pulse,
  • the  "precursor"  $g_{\rm –1}$,
  • the  "postcursor"  (trailer)  $g_1$,
  • the rms value  $\sigma_d$  of the detection noise component  $d_{\rm N}(t)$  before the respective decision.


Bipolar amplitude coefficients are assumed,  so that,  for example,  for the worst-case error probability  $($German:  "ungünstigste Fehlerwahrscheinlichkeit"   ⇒   "$\rm U$"$)$   of the receiver with threshold decision, the following applies:

$$p_{\rm U,\hspace{0.15cm} SE } = \left\{ \begin{array}{c} {\rm Q}\big [ ({g_0-|g_{-1}|-|g_{1}|})/{\sigma_d} \big ]\\ \\{\rm Q}(0) = 0.5 \end{array} \right.\quad \begin{array}{*{1}c} {\rm with }\hspace{0.15cm}{\rm open }\hspace{0.15cm}{\rm eye }, \\ \\{\rm with }\hspace{0.15cm}{\rm closed }\hspace{0.15cm}{\rm eye }. \\ \end{array}\begin{array}{*{20}c} \\ \end{array}$$

For the Nyquist system  $\rm A$,  the mean error probability is exactly the same, viz.

$$p_{\rm SE } =p_{\rm U,\hspace{0.15cm} SE } = {\rm Q}\left( {g_0}/{\sigma_d} \right)= {\rm Q}(5) \approx 2.87 \cdot 10^{-7}\hspace{0.05cm}.$$

For the other system variants   $\rm B$,  $\rm C$  and  $\rm D$  considered here, the intersymbol interferences are so strong and the given noise rms value is so small that the following approximation can be applied:

$$p_{\rm SE } \approx {1}/{4} \cdot p_{\rm U,\hspace{0.1cm} SE } = {1}/{4} \cdot {\rm Q}\left( \frac {{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|-|g_{1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$

Except for the Nyquist system  $\rm A$  $($here  $p_{\rm DFE} = p_{\rm SE})$,  the following approximation applies to the DFE receiver instead:

$$p_{\rm DFE } \approx {1}/{2} \cdot p_{\rm U,\hspace{0.1cm} DFE } = {1}/{2} \cdot {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$

In contrast,  it was shown in the  "last theory section"  for this chapter that for a receiver with ML decision, the following approximation holds:

$$p_{\rm ML } = {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[g_{\nu}]}{\sigma_d} \right)\hspace{0.05cm}.$$


Notes:

  • To apply the algorithm given in the theory section for two precursors,  you would have to make the following renamings 
    $($which,  however,  has no meaning for the calculation of the error probabilities$)$:
$$g_{1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{0 },\hspace{0.4cm} g_{0 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-1 },\hspace{0.4cm} g_{-1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-2 } \hspace{0.05cm}.$$


Questions

1

What is the error probability for system  $\rm A$  with maximum likelihood detection  $\rm (ML)$?

$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \cdot 10^{\rm –7} $

2

What error probabilities are to be expected with system  $\rm B$? 

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $

3

What are the error probabilities for system  $\rm C$?

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $

4

What error probabilities are to be expected with system  $\rm D$? 

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $


Solution

(1)  Without intersymbol interference  $\text{(system A)}$,  the DFE and ML receivers do not improve over the simple threshold decision:

$$ p_{\rm DFE } = p_{\rm ML } = p_{\rm SE } \hspace{0.15cm}\underline {\approx 2.87 \cdot 10^{-7}} \hspace{0.05cm}.$$


(2)  With  $g_0 = 0.6$,  $g_{\rm –1} = 0.1$  and  $g_1 = 0.3$,  $\text{(system B)}$,  one obtains approximately:

$$p_{\rm SE } \ \approx \ {1}/{4} \cdot {\rm Q}\left( \frac{0.6-0.1-0.3}{0.2} \right)= {1}/{4} \cdot{\rm Q}(1) \hspace{0.15cm}\underline {\approx 4\% \hspace{0.05cm}},$$
$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.6-0.1}{0.2} \right)= {1}/{2} \cdot {\rm Q}(2.5) \hspace{0.15cm}\underline {\approx 0.31\%} \hspace{0.05cm},$$
$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.6}{0.2} \right) = {\rm Q}(3) \hspace{0.15cm}\underline {\approx 0.135\%} \hspace{0.05cm}.$$


(3)  With  $g_0 = 0.4$  and  $g_1 = g_{\rm –1} = 0.3$  $\text{(system C)}$,  one obtains approximately:

$$p_{\rm SE } \ \approx \ {1}/{4} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 12.5\%} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm closed }\hspace{0.15cm}{\rm eye } \hspace{0.05cm},$$
$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.4-0.3}{0.2} \right)= {1}/{2} \cdot {\rm Q}(0.5) \hspace{0.15cm}\underline {\approx 15\% \hspace{0.05cm}},$$
$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.4}{0.2} \right) = {\rm Q}(2) \hspace{0.15cm}\underline {\approx 2.27\%} \hspace{0.05cm}.$$
  • Interesting is – and not a calculation error – that the DFE is worse than the conventional threshold decision when the error probability is  $10\%$  or more.
  • See also the solution for subtask  (4).


(4)  With system $\text{D}$,  the DFE receiver also has a closed eye.

  • $p_{\rm DFE}$  is greater than  $p_{\rm SE}$,  since the worst-case symbol sequence now occurs more frequently.  According to the given simple approximation holds:
$$p_{\rm SE } = {1}/{4} \cdot{\rm Q}(0) = 0.125\hspace{0.05cm}, \hspace{0.2cm} p_{\rm DFE } = {1}/{2} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.250} \hspace{0.05cm}.$$
  • On the other hand,  with an exact calculation one obtains:
$$p_{\rm SE } \ = \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3-0.4-0.3}{0.2}\right) + {1}/{4} \cdot{\rm Q}\left( \frac{0.3-0.4+0.3}{0.2}\right)+ \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3+0.4-0.3}{0.2}\right) +{1}/{4} \cdot{\rm Q}\left( \frac{0.3+0.4+0.3}{0.2}\right)$$
$$ \Rightarrow \hspace{0.3cm}p_{\rm SE } \ = \ {1}/{4} \cdot \left[ {\rm Q}(-2) + {\rm Q}(1) +{\rm Q}(2) +{\rm Q}(5) \right] ={1}/{4} \cdot \left[ 1+ {\rm Q}(1) +{\rm Q}(5) \right] \hspace{0.05cm}.$$
  • Because of  ${\rm Q}(–2) + {\rm Q}(2) = 1$  and  ${\rm Q}(5) \approx 0$  we obtain  $p_{\rm SE} \approx 25.5\%$.
  • The same applies to the DFE receiver:
$$p_{\rm DFE } \ = \ {1}/{2} \cdot {\rm Q}\left( \frac{0.3-0.4}{0.2}\right) + {1}/{2} \cdot{\rm Q}\left( \frac{0.3+0.4}{0.2}\right)= \ {1}/{2} \cdot \left[ {\rm Q}(-0.5) + {\rm Q}(3.5) \right] \approx\frac{1- {\rm Q}(0.5)}{2}\hspace{0.15cm}\underline {= 35\%} \hspace{0.05cm}.$$
  • In contrast,  the error probability  $p_{\rm ML}$  of a maximum likelihood receiver is still  ${\rm Q}(2) \hspace{0.15cm} \underline {= 2.27\%}$.
  • The order of the basic detection pulse values is  (almost)  irrelevant for the error probability of the Viterbi receiver.