Processing math: 100%

Exercise 4.4: About the Quantization Noise

From LNTwww

Quantization error with sawtooth input

To calculate the quantization noise power  PQ  we assume a periodic sawtooth-shaped source signal  q(t)  with value range  ±qmax  and period duration  T0 .

  • In the mean time domain  T0/2tT0/2  holds:   q(t)=qmax(2t/T0).
  • We refer to the power of the signal  q(t)  here as the transmit power  PS.


The signal  q(t)  is quantized according to the graph with  M=6  steps.  The quantized signal is  qQ(t),  where:

  • The linear quantizer is designed for the amplitude range  ±Qmax  such that each quantization interval has width  Δ=2/MQmax.
  • The diagram shows this fact for  Qmax=qmax=6 V.  These numerical values shall be assumed up to and including the subtask  (5).


The  "quantization noise power"  is defined as the second moment of the difference signal  ε(t)=qQ(t)q(t).  It holds:

PQ=1T0T00ε(t)2dt,

where the time  T0  is to be chosen appropriately.  The  "quantization SNR"  is the ratio    ρQ=PS/PQ,  which is usually given logarithmically  (in dB).





Hints:



Questions

1

Calculate the signal power  PS  (referred to the resistor 1 Ω).

PS = 

 V2

2

Which statements are true for the error signal  ε(t)=qQ(t)q(t) ?

ε(t)  has a sawtooth shape.
ε(t)  has a step-like progression.
ε(t)  is restricted to the range  ±Δ/2=±1 V.
ε(t)  has period  T0=T0/M.

3

What is the quantization noise power  PQ  for  M=6?

PQ = 

 V2

4

Calculate the quantization noise ratio for  M=6.

10lg ρQ = 

 dB

5

What values result from quantization with  N=8  or  N=16 bits?

N=8:10lg ρQ = 

 dB
N=16:10lg ρQ = 

 dB

6

What conditions must be met for the derived equation to apply to  ρQ?

All amplitude values are equally probable.
A linear quantizer is present.
The quantizer is exactly matched to the signal  (Qmax=qmax).


Solution

(1)  The signal power  PS  is equal to the second moment of  q(t) if the reference resistance  1Ω  is used and therefore the unit  V2  is accepted for the power.

  • Due to periodicity and symmetry,  averaging over the time domain  T0/2  is sufficient:
PS=1T0/2T0/20q2(t)dt=2q2maxT0T0/20(2t/T0)2dt=2q2maxT0T0210x2dx=q2max3.
  • Here the substitution  x=2t/T0  was used.  With  qmax=6 V  one gets  PS=12 V2_.


Error signal for  Qmax=qmax

(2)  Correct are  suggested solutions 1, 3, and 4:

  • We assume here  Qmax=qmax=6 V.
  • This gives the sawtooth-shaped error signal  ε(t)  between  ±1 V.
  • The period duration is  T0=T0/6.


(3)  The error signal  ε(t)  proceeds in the same way as  q(t)  sawtooth.

  • Thus,  the same equation as in subtask  (1)  is suitable for calculating the power.
  • Note,  however,  that the amplitude is smaller by a factor  M  while the different period duration does not matter for the averaging:
PQ=PSM2=12V236=0.333V2_.


(4)  The results of the subtasks  (1)  and  (3)  lead to the quantization SNR:

ρQ=PSPQ=M2=3610lgρQ=15.56dB_.


(5)  With  M=2N  we obtain in general:

ρQ=M2=22N10lgρQ=20lg(2)N6.02dBN.
  • This results in the special cases we are looking for:
N=8:10lgρQ=48.16dB_,
N=16:10lgρQ=96.32dB_.


Quantization with  Qmaxqmax

(6)  All of the above preconditions  must be satisfied:

  • For non-linear quantization,  the simple relation  ρQ=M2  does not hold.
  • For an PDF other than the uniform distribution  ρQ=M2  is also only an approximation,  but this is usually accepted.
  • If  Qmax<qmax,  truncation of the peaks occurs,  while with  Qmax>qmax  the quantization intervals are larger than required.


The graph shows the error signals  ε(t) 

  1. for  Qmax>qmax  (left)
  2. and  Qmax<qmax  (right):


In both cases,  the quantization noise power is significantly larger than calculated in sub-task  (3).