Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.5Z: Tangent Hyperbolic and Inverse

From LNTwww

y=tanh(x)  tabularly

In the  "Theory Part"  it was shown,  using the example of a  "single parity–check code"  that the extrinsic  L value with respect to the  ith  symbol is defined as follows:

LE(i)=lnPr[wH(x_(i))iseven|y_]Pr[wH(x_(i))isodd|y_].
  • This equation is also applicable to many other channel codes.
  • The code word  x_(i)  in this definition includes all symbols except  xi  and has thus only length  n1.


In the  Exercise 4.4  it was shown that the extrinsic  L value can also be written as follows:

LE(i)=ln1+π1π,withπ=njitanh(Lj/2).

In this exercise,  we will now look for another calculation possibility.





Hints:

  • Above you can see a table with the numerical values of the function  y=tanh(x)   ⇒   "hyperbolic tangent".
  • With the rows highlighted in red you can read the values of the inverse function  x=tanh1(y)  needed for subtask  (5).



Questions

1

It holds   L_APP=(+1.0,+0.4,1.0).   Calculate the extrinsic  L values   ⇒   L_E=(LE(1), LE(2), LE(3))   according to the second equation given:

LE(1) = 

LE(2) = 

LE(3) = 

2

Which of the properties does the function   y=tanh(x)   exhibit?

tanh(x)=(exex) / (ex+ex)  is valid.
tanh(x)=(1e2x) / (1+e2x)  is valid.
The function   y=tanh(x)   is defined for all  x values.
ymin=0  and   ymax  is valid.
ymin=1  and   ymax=+1   is valid.

3

What are the properties of the inverse function  x=tanh1(y)?

The function   x=tanh1(y)   is defined for all  y  values.
x=tanh1(y)=1/2ln[(1+y) / (1y)]  is valid.
xmin=1  and   xmax=+1  is valid.
xmin  and   xmax+  is valid.

4

How can  LE(i)  also be represented?  Let  π  be defined as in the specification section.

LE(i)=tanh1(π)  is valid.
LE(i)=2tanh1(π)  is valid.
LE(i)=2tanh1[ln[(1+π) / (1π)]]  is valid.

5

Calculate the extrinsic  L values using the equation given in exercise  (4).  Use the table in the information section for this purpose.

LE(1) = 

LE(2) = 

LE(3) = 


Solution

(1)  According to the specification applies:

LE(i)=ln1+π1π,withπ=3jitanh(Lj/2).
  • From the table on the specification section can be read:
tanh(L1/2)=tanh(0.5)=0.4621,
tanh(L2/2)=tanh(0.2)=0.1974.
  • Since the hyperbolic tangent is an odd function,  the following applies further
tanh(L3/2)=tanh(0.5)=0.4621.
  • Calculation of  LE(1):
π=tanh(L2/2)tanh(L3/2)=(+0.1974)(0.4621)=0.0912LE(1)=ln10.09121+0.0912=0.1829_.
  • Calculation of  LE(2):
π=tanh(L1/2)tanh(L3/2)=(+0.4621)(0.4621)=0.2135LE(2)=ln10.21351+0.2135=0.4337_.
  • Calculation of  LE(3):
π=tanh(L1/2)tanh(L2/2)=(+0.4621)(+0.1974)=+0.0912LE(3)=ln1+0.091210.0912=+0.1829_=LE(1).


(2) Correct are the  solutions 1, 2, 3, and 5:  The function

y=tanh(x)=exexex+ex=1e2x1+e2x

is computable for all  x  values and   tanh(x)=tanh(x)  holds.

  • For large values of  x:     e2x  becomes very small,  so that in the limiting case   x  the limit  y=1  is obtained.


(3)  Since the  "hyperbolic tangent"  only yields values between  ±1,  the inverse function   x=tanh1(y)   can also only be evaluated for  |y|1.

  • By rearranging the given equation
x=tanh1(y)=1/2ln1+y1y
one obtains:
e2x=1+y1ye2x=1y1+y(1+y)e2x=1yy=1e2x1+e2x=tanh(x).
  • This means:
  1. The equation given in the  proposed solution 2  is correct.
  2. In the limiting case  y1,   x=tanh1(y)  holds.
  3. Also the inverse function is odd   ⇒   in the limiting case  y1  goes  x.
  • Accordingly,  the  proposed solutions 2 and 4  are correct.


(4)  Starting from the equation.

LE(i)=ln1+π1π

one arrives with the result of  (3)  at the equivalent equation corresponding to  proposed solution 2:

LE(i)=2tanh1(π).


(5)  With the result of the subtask  (1)  we get

  • for the first extrinsic  L  value,  since  π1=0.0912:
LE(1)=2tanh1(0.0912)=2tanh1(0.0912)=20.0915=0.1830_.
  • for the second extrinsic  L  value,  since  π2=0.2135:
LE(2)=2tanh1(0.2135)=20.2168=0.4336_.
  • for the third extrinsic  L value,  since  π3=+0.0912=π1:
LE(3)=LE(1)=+0.1830_.

Note:

  • The result was determined using the red table entries on the information section.
  • Except for rounding errors  (multiplication/division by  2),  the result agrees with the results of subtask  (1).