Exercise 5.4: Sine Wave Generator
From LNTwww
The diagram shows a second-order digital filter suitable for generating a discrete-time sinusoidal function on a digital signal processor (DSP), for example:
- ⟨yν⟩=⟨sin(νT⋅ω0)⟩.
- It is assumed that the input sequence ⟨xν⟩ describes a (discrete-time) Dirac delta function. Thus, all output values yν are simultaneously identical to zero for times ν<0.
- The total of five filter coefficients result from the Z-transform:
- Z{sin(νTω0)}=z⋅sin(ω0T)z2−2⋅z⋅cos(ω0T)+1.
- Substituting this equation by a recursive second order filter (M=2), we obtain the following filter coefficients:
- a0=0,a1=sin(ω0T),a2=0,b1=2⋅cos(ω0T),b2=−1.
In the diagram it is already marked by the lighter border that the filter coefficients a0 and a2 can be omitted.
Notes:
- The exercise belongs to the chapter Digital Filters in this book.
- The HTML5/JavaScript applet "Digital Filters" illustrates the subject matter of this chapter.
- For the subtasks (1) to (3) the following apply:
- a1=0.5,b1=√3.
Questions
Solution
(1) The "1" at the input affects (because of a_0= 0) at the output only at the time \nu = 1:
- y_0 \hspace{0.15cm} \underline{= 0},\quad y_1 \hspace{0.15cm} \underline{ = 0.5}.
- At \nu = 2, the recursive part of the filter also takes effect:
- y_2 = b_1 \cdot y_1 - y_0 = {\sqrt 3 }/{2} \hspace{0.15cm} \underline{ \approx 0.866}.
(2) For \nu \ge 2, the filter is purely recursive:
- y_\nu = b_1 \cdot y_{\nu - 1} - y_{\nu - 2} .
- In particular, one obtains
- y_3 = \sqrt 3 \cdot y_2 - y_1 = \sqrt 3 \cdot {\sqrt 3 }/{2} - {1}/{2} = 1;
- y_4 = \sqrt 3 \cdot y_3 - y_2 = \sqrt 3 \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};
- y_5 = \sqrt 3 \cdot y_4 - y_3 = \sqrt 3 \cdot {\sqrt 3 }/{2} - 1 = {1}/{2};
- y_6 = \sqrt 3 \cdot y_5 - y_4 = \sqrt 3 \cdot {1}/{2} - {\sqrt 3 }/{2} = 0;
- y_7 = \sqrt 3 \cdot y_6 - y_5 = \sqrt 3 \cdot 0 - {1}/{2} \hspace{0.15cm} \underline{= - 0.5}.
(3) By continuing the recursive algorithm of subtask (2), we obtain for large \nu–values:
- y_\nu = y_{\nu - 12} .
- From this follows T_0/T\hspace{0.15cm} \underline{= 12}. The same result is obtained by the following considerations:
- a_1 = \sin \left( {\omega _0 \cdot T} \right) = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right)\mathop = \limits^! {1}/{2} = \sin \left( {{{\rm{\pi }}}/{6}} \right) \;\;{\rm \Rightarrow} \;\;{2T}/{T_0 } = {1}/{6}\quad \Rightarrow \;\;{T_0 }/{T} = 12.
- Checking the coefficient b_1 confirms the calculation:
- b_1 = 2 \cdot \cos \left( {{{\rm{\pi }}}/{6}} \right) = 2 \cdot {\sqrt 3 }/{2} = \sqrt 3 .
(4) From f_0 = 10 \hspace{0.15cm} \rm kHz follows T_0 = 100 \hspace{0.05cm} \rm µ s or T_0/T = 100 . This gives:
- a_1 = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = \sin \left( {3.6^ \circ } \right) \hspace{0.15cm} \underline{\approx 0.062},
- b_1 = 2 \cdot \cos \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = 2 \cdot \cos \left( {3.6^ \circ } \right) \hspace{0.15cm} \underline{\approx 1.996}.