Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 5.4: Sine Wave Generator

From LNTwww

Proposed filter structure

The diagram shows a second-order digital filter suitable for generating a discrete-time sinusoidal function on a digital signal processor  (DSP),  for example:

yν=sin(νTω0).
  • It is assumed that the input sequence  xν  describes a  (discrete-time)  Dirac delta function.  Thus,  all output values  yν  are simultaneously identical to zero for times  ν<0
  • The total of five filter coefficients result from the  Z-transform:
Z{sin(νTω0)}=zsin(ω0T)z22zcos(ω0T)+1.
  • Substituting this equation by a recursive second order filter  (M=2),  we obtain the following filter coefficients:
a0=0,a1=sin(ω0T),a2=0,b1=2cos(ω0T),b2=1.

In the diagram it is already marked by the lighter border that the filter coefficients  a0  and  a2  can be omitted.



Notes:

  • The exercise belongs to the chapter   Digital Filters  in this book.
  • The HTML5/JavaScript applet  "Digital Filters"  illustrates the subject matter of this chapter.
  • For the subtasks  (1)  to  (3)  the following apply:
a1=0.5,b1=3.


Questions

1

Let  a1=0.5  and  b1=3.  Calculate the initial values  yν  at time points  ν=0ν=1  and  ν=2.

y0 = 

y1 = 

y2 = 

2

What is the initial value  yν  for  ν2  in general?  Calculate the values  y3, ... , y7  and enter  y7  as a check.

y7 = 

3

How many grid points  (T0/T)  represent a period  (T0)

T0/T = 

4

Now  T = 1 \hspace{0.05cm} \rm µ s  is valid.  How must the coefficients  a_1  and  b_1  be selected so that a  \text{10 kHz} sine wave is generated?

a_1 \ = \

b_1 \ = \


Solution

(1)  The  "1"  at the input affects  (because of  a_0= 0)  at the output only at the time  \nu = 1

y_0 \hspace{0.15cm} \underline{= 0},\quad y_1 \hspace{0.15cm} \underline{ = 0.5}.
  • At  \nu = 2,  the recursive part of the filter also takes effect:
y_2 = b_1 \cdot y_1 - y_0 = {\sqrt 3 }/{2} \hspace{0.15cm} \underline{ \approx 0.866}.


(2)  For  \nu \ge 2,   the filter is purely recursive:

y_\nu = b_1 \cdot y_{\nu - 1} - y_{\nu - 2} .
  • In particular,  one obtains
y_3 = \sqrt 3 \cdot y_2 - y_1 = \sqrt 3 \cdot {\sqrt 3 }/{2} - {1}/{2} = 1;
y_4 = \sqrt 3 \cdot y_3 - y_2 = \sqrt 3 \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};
y_5 = \sqrt 3 \cdot y_4 - y_3 = \sqrt 3 \cdot {\sqrt 3 }/{2} - 1 = {1}/{2};
y_6 = \sqrt 3 \cdot y_5 - y_4 = \sqrt 3 \cdot {1}/{2} - {\sqrt 3 }/{2} = 0;
y_7 = \sqrt 3 \cdot y_6 - y_5 = \sqrt 3 \cdot 0 - {1}/{2} \hspace{0.15cm} \underline{= - 0.5}.


(3)  By continuing the recursive algorithm of subtask  (2),  we obtain for large  \nu–values:  

y_\nu = y_{\nu - 12} .
  • From this follows  T_0/T\hspace{0.15cm} \underline{= 12}.  The same result is obtained by the following considerations:
a_1 = \sin \left( {\omega _0 \cdot T} \right) = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right)\mathop = \limits^! {1}/{2} = \sin \left( {{{\rm{\pi }}}/{6}} \right) \;\;{\rm \Rightarrow} \;\;{2T}/{T_0 } = {1}/{6}\quad \Rightarrow \;\;{T_0 }/{T} = 12.
  • Checking the coefficient  b_1  confirms the calculation:
b_1 = 2 \cdot \cos \left( {{{\rm{\pi }}}/{6}} \right) = 2 \cdot {\sqrt 3 }/{2} = \sqrt 3 .


(4)  From  f_0 = 10 \hspace{0.15cm} \rm kHz  follows  T_0 = 100 \hspace{0.05cm} \rm µ s  or  T_0/T = 100 . This gives:

a_1 = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = \sin \left( {3.6^ \circ } \right) \hspace{0.15cm} \underline{\approx 0.062},
b_1 = 2 \cdot \cos \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = 2 \cdot \cos \left( {3.6^ \circ } \right) \hspace{0.15cm} \underline{\approx 1.996}.