Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Glossary

From LNTwww

Due to the fact,  that our e–learning project LNTwww was first conceived in German and the wish for an English version came much later,  in the English version the assignment between  »Formula signs«   and  »Designation«  is not quite easy.   The following alphabetically ordered entries can help in this case:

  »Formula sign«   ⇒   »German name«   ⇒   »English name«
  • First select from the list below the category to which the "formula sign" you are looking for belongs.
  • A few explanations are given under the last menu item  »Some remarks to the Glossary«.

Upper case letters  A, ... , G


  A   ⇒   (1)  Ereignis,  (2)  Impulsamplitude   ⇒   (1)  event,  (2)  pulse amplitude

  {Ai}={A1,...,AI}   ⇒   Ereignismenge eines Zufallsexperiments   ⇒   event set of a random experiment;     note:   IM
  ¯A   ⇒   Komplementärmenge des Ereignisses  A   ⇒   complementary set of event  A
  A0   ⇒   Gleichsignalkoeffizient der Fourierreihe   ⇒   DC coefficient of Fourier series
  An   ⇒   n–ter Cosinuskoeffizient der Fourierreihe   ⇒   nth  cosine coefficient of Fourier series
  A{x(t)}=xA(t)   ⇒   Abtastung des Signals  x(t)   ⇒   sampling of signal  x(t)

  B   ⇒   einseitige Bandbreite   ⇒   one-sided bandwidth

  Bx   ⇒   einseitige Bandbreite  des Signals  x(t)  ⇒   one-sided bandwidth of signal  x(t)
  BBP   ⇒   physikalische Bandbreite eines BP-Signals  ⇒   physical bandwidth of a band-pass signal
  BTP   ⇒   Bandbreite eines BP-Signals im äquivalenten TP-Bereich  ⇒   bandwidth of a band-pass signal in the equivalent low-pass range
  BK   ⇒   einseitige Kanalbandbreite  (des Kanals)  ⇒   one-sided channel bandwidth
  BN   ⇒   einseitige Bandbreite des niederfrequenten Quellendignal  q(t)  ⇒   one-sided bandwidth of the low-frequency source signal  q(t)
  B6dB   ⇒   Kenngröße der Spektralanalyse bzgl. Frequenzauflösung  ⇒   parameter of spectral analysis for frequency resolution
  Bn   ⇒   n–ter Sinuskoeffizient der Fourierreihe   ⇒   nth  sine coefficient of Fourier series

  C   ⇒   Menge der komplexen Zahlen   ⇒   set of complex numbers

  C   ⇒   (1)  Kapazität,  (2)  Kapazitätswert   ⇒   (1)  capacity,  (2)  capacitance

  C   ⇒   Parallelkapazität pro Längeneinheit   ⇒   parallel capacitance per unit length
  CA   ⇒   Kanalkapazität bei Amplitudenbegrenzung   ⇒   channel capacity under peak-value limitation
  CL   ⇒   Kanalkapazität bei Leistungsbegrenzung   ⇒   channel capacity under power limitation
  C0=A0   ⇒   Gleichsignalkoeffizient der komplexen Fourierreihe   ⇒   DC coefficient of the complex Fourier series
  Cn   ⇒   n–ter Betragskoeffizient der Fourierreihe   ⇒   nth  magnitude coefficient of Fourier series
  Cx(Ω)   ⇒   charakteristische Funktion der Zufallsgröße  x   ⇒   characteristic function   of random variable  x  (Fourier retransform of PDF)

  D   ⇒   formaler Parameter, der eine Verzögerung um einen Takt angibt   ⇒   formal parameter indicating a delay by one clock

  D(μ)=fAP{X(f)}|f=μfA   ⇒   Spektralkoeffizienten bei DFT/IDFT   ⇒   spectral coefficients of DFT/IDFT
  D(μ)=D(0),...,D(N1)   ⇒   diskrete Spektralfunktion bei DFT/IDFT   ⇒   discrete spectral function of DFT/IDFT
  D(μ)(N)d(ν)   ⇒   DFT/IDFT mit  N  Stützstellen   ⇒   DFT/IDFT with  N  interpolation points
  Dn   ⇒   n–ter Betragskoeffizient der komplexen Fourierreihe   ⇒   nth  magnitude coefficient of complex Fourier series

  E   ⇒   (1)  Schwellenwert,  (2)  Energie,  (3)  Ergebnis eines Zufallsexperiments   ⇒   (1)  threshold value,  (2)  energy, (3)  outcome of a random experiment

  Eμ   ⇒   (1)  Schwellenwerte, (2)  Ergebnisse eines Zufallsexperiments   ⇒   (1)  thresholds of a multilevel system, (2) possible outcomes of a random experiment 
  {Eμ}={E1,...,EM}   ⇒   Ergebnismenge eines Zufallsexperiments   ⇒   outcome set of a random experiment
  Eopt   ⇒   optimaler Schwellenwert   ⇒   optimum threshold value
  Eg   ⇒   Energie des Impules  g(t)   ⇒   energy of pulse  g(t)
  EB   ⇒   Energie pro Bit,  Bitenergie   ⇒   energy per bit
  ES   ⇒   Energie pro Symbol,  Symbolenergie   ⇒   energy per symbol
  EV=min   ⇒   Verzerrungsenergie   ⇒   distortion energy
  {\rm E}\{\text{...}\}   ⇒   Erwartungswert   ⇒   expected value
  {\rm E}(x)   ⇒   Erwartungswert  der Zufallsgröße  x   ⇒   expected value  of random variable  x
  {\rm E}\big[g (x ) \big] = \int_{-\infty}^{+\infty} g(x)\cdot f_{x}(x) \,{\rm d}x   ⇒   Erwartungswert  (der mit  g(x)  gewichteten Zufallsgröße  x)   ⇒   expected value  of random variable  x weighted by  g(x)

  F   ⇒   Rauschzahl   ⇒   noise figure

  F_{x}(r) ={\Pr}(x \le r)   ⇒   Verteilungsfunktion  \rm (VTF)  der Zufallsgröße  x   ⇒   cumulative distribution function  \rm (CDF)  of random variable  x

  G   ⇒     Störabstandsgewinn in dB   ⇒   signal-to-noise ratio gain in dB

  G= \{E_\mu\}= \{E_1, \hspace{0.1cm}\text{...} \hspace{0.1cm}, E_M \}   ⇒     Grundmenge eines Zufallsexperiments   ⇒   universal set of a random experiment;     note:   \rm {Pr}(G)=1
  G'   ⇒   Parallelleitwert pro Längeneinheit   ⇒   parallel conductance per unit length
  G(D)   ⇒     Generatorpolynom   ⇒   generator polynomial
  G_{\rm R}(D)=D^{L}\cdot G(D^{-1})   ⇒     reziprokes Polynom des Generatorpolynoms  G(D)   ⇒   reciprocal polynomialof the generator polynomial  G(D)
  G(f)   ⇒   Grundimpulsspektrum   ⇒   spectrum of the basic pulse  g(t)
  G_d(f)   ⇒   Detektionsgrundimpulsspektrum   ⇒   spectrum of the basic detection pulse  g_d(t)
  G_r(f)   ⇒   empfangsgrundimpulsspektrum   ⇒   spectrum of the basic receiver pulse  g_r(t)
  G_s(f)   ⇒   Sendegrundimpulsspektrum   ⇒   spectrum of the basic transmission pulse  g_s(t)


Upper case letters  H, ... , O


  \rm H   ⇒   Symbolwert  »High«  einer binären Zufallsgröße z \in \{ \text{L, H}\}   ⇒   symbol value  »High«  of a binary random variable  z \in \{ \text{L, H}\}

  H(f)   ⇒   Frequenzgang, Übertragungsfunktion   ⇒   frequency response, transfer function
  H(f=0)   ⇒   Gleichsignalübertragungsfaktor   ⇒   direct signal transmission factor
  |H(f)|   ⇒   Betragsfrequenzgang   ⇒   magnitude frequency response
  H_{\rm E}(f)   ⇒   Empfängerfrequenzgang   ⇒   receiver frequency response
  H_{\rm K}(f)   ⇒   Kanalfrequenzgang   ⇒   channel frequency response
  H_{\rm MF}(f)   ⇒   Frequenzgang des Matched-Filters  ⇒   frequency response of the Matched Filter
  H_{\rm S}(f)   ⇒   Senderfrequenzgang   ⇒   transmitter frequency response
  H_{\rm L}(p)= {Z(p)}/{N(p)} \hspace{0.05cm}   ⇒   p-Übertragungsfunktion   ⇒   p–transfer function
  H(X)   ⇒   Quellenentropie   ⇒   source entropy
  H(Y)   ⇒   Sinkenentropie   ⇒   sink entropy
  H(X|Y)   ⇒   Äquivokation   ⇒   equivocation
  H(Y|X)   ⇒   Irrelevanz   ⇒   irrelevance
  H(XY)   ⇒   Verbundentropie   ⇒   joint entropy
  {\rm H}\left\{x(t)\right\}   ⇒   Hilbert-Transformierte der Zeitfunktion  x(t)   ⇒   Hilbert transform of time function  x(t)


  I   ⇒   (1) Strom (2) erster Parameter der Binomialverteilung   ⇒   (1) current,  (2) first parameter of binomial distribution

  \mathbb{I} \neq {z/n}  mit  z \in \mathbb{Z}, n \in \mathbb{N}   ⇒   Menge der irrationalen Zahlen   ⇒   set of irrational numbers
  I(X; Y)   ⇒   Transinformation   ⇒   mutual information

  J   ⇒   Spreizfaktor   ⇒   spreading factor

  K   ⇒   konstanter Faktor   ⇒   constant factor

  K = \mu_4/σ^4   ⇒   Kurtosis   ⇒   kurtosis
  K = 1/A_1\cdot \sqrt{A_2^2+ A_3^2+ A_4^2+ \hspace{0.05cm}\text{...} }   ⇒   Klirrfaktor eines nichtlinearen Systems   ⇒   distortion factor of a non-linear system

  \rm L   ⇒   Symbolwert  »Low«  einer binären Zufallsgröße z \in \{ \text{L, H}\}   ⇒   symbol value  »Low«  of a binary random variable  z \in \{ \text{L, H}\}
  L   ⇒   Induktivitätswert   ⇒   inductance

  L'   ⇒   Serieninduktivität pro Längeneinheit   ⇒   serial inductance per unit length

  M   ⇒   (1)  Symbolumfang,  (2)  Stufenzahl   ⇒   (1)  symbol set size,  (2)  level number

  M_c   ⇒   Stufenzahl des Codersignals   ⇒   level number of the encoded signal
  M_q   ⇒   Stufenzahl des Quellensignals   ⇒   level number of the source signal
  \rm MQF   ⇒   mittlerer quadratischer Fehler   ⇒   mean square error

  \mathbb{N} = \{1, 2, 3, \text{...}\hspace{0.05cm} \}  ⇒   Menge der natürlichen Zahlen   ⇒   set of natural numbers
  N  ⇒   (1)  Dimension des Signal-Vektorraums,  (2)  Feldlänge bei DFT/IDFT   ⇒   (1)  dimension of the signal vector space,  (2)  field length for DFT/IDFT

  N(p)= B_N \cdot p^N +\text{...} \ + B_2 \cdot p^2 + B_1 \cdot p + B_0   ⇒   Nennerpolynom der  p-Transferfunktion  H_{\rm L}(p)   ⇒   denominator polynomial of p–transfer function  H_{\rm L}(p)
  N_0   ⇒   physikalische Rauschleistungsdichte  (einseitig)   ⇒   physical noise power density  (one-sided)
  N_0/2   ⇒   systemtheoretische Rauschleistungsdichte  (zweiseitig)   ⇒   system– theoretical noise power density  (two-sided)

  \mathcal{O}  ⇒   Anzahl der Operationen eines Algorithmus   ⇒   number of operations of an algorithm


Upper case letters  P, ... , Z


  P   ⇒   (1)  Leistung,    (2)  Periodendauer   ⇒   (1)  power,  (2)  period duration

  P_{x}   ⇒   Leistung des Signals  x(t)   ⇒   power of the signal  x(t)
  P_{\rm S}= \overline{s^2(t)}   ⇒   Sendeleistung   ⇒   power of the transmitted signal,  transmission power
  P_{\rm V}= \overline{\varepsilon_{\rm V}^2(t)}   ⇒   Verzerrungsleistung:   MQF des Verzerrrungssignals  \varepsilon(t)=y(t)-x(t)   ⇒   distortion power:   MSE of the distortion signal  \varepsilon(t)=y(t)-x(t)
  P_{\rm max} = 2^L - 1   ⇒   maximale Periodendauer eines Schieberegisters der Länge  L   ⇒   maximum period of a shift register with length  L
  P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm} \vert \hspace{0.03cm} X)   ⇒   Matrix bedingter Wahrscheinlichkeiten   ⇒   conditional probability matrix
  P_{XY}(X,\hspace{0.1cm}Y)   ⇒   Verbundwahrscheinlichkeitsmatrix   ⇒   joint probability matrix
  P_{\hspace{0.01cm}X\hspace{0.03cm} \vert \hspace{0.03cm}Y}(X\hspace{0.03cm} \vert \hspace{0.03cm} Y)   ⇒   Rückschlusswahrscheinlichkeitsmatrix   ⇒   inference probability matrix
  P_X(X)   ⇒   Wahrscheinlichkeitsfunktion der Zufallsgröße  X   ⇒   probability mass function  \rm (PMF)  of random variable  X
  P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm} \vert \hspace{0.03cm} X)   ⇒   Übergangswahrscheinlichkeitsmatrix der Zufallsgröße  X   ⇒   transition probabilitiy matrix  of random variable  X
  P_{\hspace{0.01cm}X\hspace{0.03cm} \vert \hspace{0.01cm}Y}(X\hspace{0.03cm} \vert \hspace{0.03cm} Y)   ⇒   ????? Übergangswahrscheinlichkeitsmatrix der Zufallsgröße  X   ⇒   transition probabilitiy matrix  of random variable  X
  {\rm Pr} (A_i)   ⇒   Wahrscheinlichkeit des Ereignisses  A_i   ⇒   probability of event  A_i
  {\rm Pr} (E_\mu)   ⇒   Wahrscheinlichkeit des Ergebnisses  E_\mu   ⇒   probability of outcome  E_\mu
  {\rm Pr} (\overline{A})   ⇒   Wahrscheinlichkeit des Komplementärereignisses zu  A   ⇒   probability of complementary set of event  A
  {\rm Pr} (A \cup B)   ⇒   Wahrscheinlichkeit der Vereinigungsmenge von  A  und B   ⇒   probability of the union set of  A  and B.
  {\rm Pr} (A \cap B)   ⇒   Wahrscheinlichkeit der Schnittmenge von  A  und B   ⇒   probability of the intersection set of  A  and B.
  {\rm Pr} (A \hspace{0.03cm} \vert \hspace{0.01cm} B)   ⇒   bedingte Wahrscheinlichkeit von  A  unter der Bedingung  B   ⇒   conditional probability of  A  under the condition  B
  P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} )   ⇒   Diracpuls im Frequenzbereich   ⇒   Dirac delta comb in the frequency domain
  {\rm P}\{X(f)\} = x_{\rm A}(t)   ⇒   Periodifizierung des Spektrums  X(f)   ⇒   periodification of spectrum  X(f)
  {\mathbf{P}} =\left( p_{ij} \right)   ⇒   M \times M  Wahrscheinlichkeitsmatrix   ⇒   M \times M  probability matrix
  {\mathbf{P}^{\rm T}}   ⇒   transponierte Wahrscheinlichkeitsmatrix   ⇒   transposed probability matrix
  {\mathbf{P}_{\rm erg}} = \lim_{n \to\infty} {\mathbf{P} }^n   ⇒   ergodische Wahrscheinlichkeitsmatrix   ⇒   ergodic probability matrix


  \mathbb{Q} = \{z/n\}  with  z \in \mathbb{Z}  and  n \in \mathbb{N}   ⇒   Menge der rationalen Zahlen   ⇒   set of rational numbers

  {\rm Q}(x)= 1-{\rm \phi}(x)   ⇒   komplementäre Gauß'sche Fehlerfunktion   ⇒   complementary Gaussian error function

  \mathbb{R} = \mathbb{Q} \cup \mathbb{I}   ⇒   Menge der reellen Zahlen   ⇒   set of real numbers

  R   ⇒   (1)  Rate,  (2)  Widerstand   ⇒   (1)  rate,  (2)  resistance

  R'   ⇒   Serienwiderstand pro Längeneinheit   ⇒   serial resistance per unit length
  R_{\rm C}=k/n   ⇒   Coderate bei Blockcodes   ⇒   code rate for block codes
  R_{\rm TP}(f)   ⇒   Spektrum des äquivalenten Tiefpass–Empfangssignals   ⇒   spectum of the equivalent low-pass received signal

  S   ⇒   System   ⇒   system

  S_{\rm E}   ⇒   System zur Entzerrung von  S_{\rm V}   ⇒   system for equalizing  S_{\rm V}
  S_{\rm V}   ⇒   verzerrtes System   ⇒   distorting system
  S=μ3/σ3   ⇒   Charliersche Schiefe   ⇒   Charlier's skewness
  S(f)   ⇒   Sendespektrum, Spektrum des Sendesignals   ⇒   spectum of the transmitted signal
  S_{\rm TP}(f)   ⇒   Spektrum des äquivalenten Tiefpass–Sendesignals   ⇒   spectum of the equivalent low-pass transmitted signal

  T   ⇒   (1) Symboldauer,  (2) Impulsdauer   ⇒   (1) symbol duration,  (2) pulse duration

  T_{\rm A}   ⇒   Abtastabstand   ⇒   sampling distance  x(t)
  T_{\rm B}   ⇒   Bitdauer  x(t)   ⇒   bit duration  x(t)
  T_{\rm D}   ⇒   Detektionszeitpunkt  x(t)   ⇒   detection time  x(t)
  T_{\rm M}   ⇒   Messdauer   ⇒   measure duration,  measuring time

  U   ⇒   (1) Spannung (2) ???   ⇒   (1) voltage,  (2) ???

  U(x)   ⇒   ortsabhängige Welle   ⇒   location-dependent wave
  U_{\rightarrow}(x)   ⇒   vorwärts gerichtete Welle   ⇒   forward wave
  U_{\leftarrow}(x)   ⇒   rückwärts gerichtete Welle   ⇒   backward wave

  W(f)   ⇒   Spektrum der Fensterfunktion  w(t)  ⇒   spectrum of the window function  w(t)

  W(0) = W(f=0)   ⇒   Fläche der Fensterfunktion  w(t)  ⇒   area of the window function  w(t)  for spectral analysis
  W(f) = {\cal H}\left\{U(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f)   ⇒   Hilbert–Transformierte der Funtion  U(f)   ⇒   Hilbert transform of function  U(f)

  X(f)   ⇒   (1)  Spektrum des Signals  x(t)(2)   Eingangsspektrum   ⇒   (1)  spectrum of signal  x(t)(2)  input spectrum

  X_{\rm A}(f)   ⇒   Spektrum des abgetasteten Signals  x_{\rm A}(t)     ⇒   spectrum of sampled signal  x_{\rm A}(t)
  X_{\rm TP}(f)   ⇒   Spektrum des äquivalenten Tiefpass–Signals  x_{\rm TP}(t)   ⇒   spectum of the equivalent low-pass signal  x_{\rm TP}(t)
  X_{\rm I}(f)   ⇒   Imaginärteil des Spektrums  X(f),    ⇒   imaginary part of spectrum  X(f)
  X_{\rm R}(f)   ⇒   Realteil des Spektrums  X(f),    ⇒   real part of spectrum  X(f)
  X_{\rm P}(f)   ⇒   Spektrum des periodischen Signals  x_{\rm P}(t),    ⇒   spectrum of the periodic signal  x_{\rm P}(t)
  X_{\rm L}(p) \ \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ \ x(t)   ⇒   Laplace–Transformierte des Signals  x(t)   ⇒   Laplace transform of signal  x(t)

  Y(f)   ⇒   (1)  Spektrum des Signals  y(t)(2)   Ausgangsspektrum   ⇒   (1)  spectrum of signal  y(t)(2)  output spectrum


  \mathbb{Z} = \{\text{...}\hspace{0.05cm} , -3, -2, -1, \ 0, +1, +2, +3, \text{...}\hspace{0.05cm}\}   ⇒   Menge der ganzen Zahlen   ⇒   set of integer numbers

  Z(p)=A_Z \cdot p^Z +\text{...} + A_2 \cdot p^2 + A_1 \cdot p + A_0  ⇒   Zählerpolynom der  p-Transferfunktion  H_{\rm L}(p)   ⇒   numerator polynomial of p–transfer function  H_{\rm L}(p)
  Z_1 = R_1   ⇒   Innenwiderstand des Senders   ⇒   internal resistance of the transmitter
  Z_2 = R_2   ⇒   Abschlusswiderstand der Leitung   ⇒   terminating resistor of the cable
  Z_{\rm E}(f)   ⇒   Eingangsimpedanz der Leitung   ⇒   input impedance of the line
  Z_{\rm W}(f)   ⇒   Wellenwiderstand   ⇒   wave impedance

Lower case letters  a, ... , g


  {\rm a}(f) = \alpha(f) \cdot l   ⇒   Dämpfungsfunktion  ⇒   attenuation function

  {\rm a}(f) = - \ln \vert H(f)\vert \hspace{0.2cm}{\rm in \hspace{0.1cm}Neper \hspace{0.1cm}(Np) } = - 20 \cdot \lg \vert H(f)\vert \hspace{0.2cm}{\rm in \hspace{0.1cm}decibel \hspace{0.1cm}(dB) }   ⇒   logarithmierte Dämpfungsfunktion  ⇒   logarithmic attenuation function
  {\rm a}_{\rm B}(f)   ⇒   Betriebsdämpfung   ⇒   operational attenuation
  {\rm a}_{\rm K}(f)   ⇒   Dämpfungsfunktion  (eines Kabels)  ⇒   attenuation function  (of a cable)
  {\rm a}_0   ⇒   Gleichsignaldämpfung  ⇒   DC signal attenuation
  {\rm a}_{\rm \star} = {\rm a}_{\rm K}(f = {R}/{2}) \approx \alpha_2 \cdot \sqrt {{R}/{2}} \cdot l   ⇒   charakteristische Kabeldämpfung  (bei halber Bitrate)  ⇒   characteristic cable attenuation value  (at half bitrate)
  a_\nu   ⇒   Amplitudenkoeffizient  (sendeseitig)   ⇒   amplitude coefficient  (transmitter side)
  a_\nu '   ⇒   Amplitudenkoeffizient  (empfängerseitig)   ⇒   amplitude coefficient  (receiver side)
  \{ a_\mu \}   ⇒   Menge der möglichen Amplitudenkoeffizienten   ⇒   set of possible amplitude coefficients
  \langle a_\nu \rangle   ⇒   zeitliche Folge der Amplitudenkoeffizienten   ⇒   temporal sequence of amplitude coefficients

  b(f)= \beta(f) \cdot l   ⇒   Phasenfunktion   ⇒   phase function

  b_{\rm K}(f)   ⇒   Phasenfunktion  (eines Kabels)   ⇒   phase function  (of a cable)

  c= 3 \cdot 10 ^8\ \rm m/s   ⇒   Lichgeschwindigkeit   ⇒   velocity of light

  c(t)   ⇒   Codersignal   ⇒   encoded signal
  \langle c_\nu \rangle   ⇒   Codesymbolfolge   ⇒   encoded symbol sequence
  \{ c_\mu \}   ⇒   Codesymbolvorrat   ⇒   encoded symbol set

  d   ⇒   Leitungsdurchmesser   ⇒   line diameter

  {\rm d}x   ⇒   Länge eines kurzen Leitungsabschnitts   ⇒   Length of a short line section
  d(t)   ⇒   Detektionssignal   ⇒   detection signal
  d_\nu   ⇒   (1)  Detektionsabtastwert,  (2)  Zeitkoeffizienten der DFT  ⇒   (1)  detection sample value,  (2)  time coefficients of the DFT
  d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}   ⇒   Zeitkoeffizienten bei DFT/IDFT  ⇒   time coefficients for DFT/IDFT
  \langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.03cm}\rangle,   ⇒   diskrete Zeitfunktion bei DFT/IDFT   ⇒   discrete time function of DFT/IDFT
  \langle \hspace{0.03cm} d(\nu)\hspace{0.03cm}\rangle \hspace{0.2cm}\circ\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\bullet\, \hspace{0.2cm} \langle \hspace{0.03cm} D(\mu) \hspace{0.03cm}\rangle   ⇒   DFT/IDFT mit  N  Stützstellen   ⇒   DFT/IDFT with  N  interpolation points
  d_{\rm N}(t)   ⇒   Detektionsstörsignal   ⇒   detection noise signal
  d_{\rm N\nu}   ⇒   Detektionsstörabtastwert   ⇒   detection noise sample value
  d_{\rm S}(t)   ⇒   Detektionsnutzsignal   ⇒   useful detection signal
  d_{\rm S\nu}   ⇒   Detektionsnutzabtastwert   ⇒   useful detection sample value
  d_{\rm H}(\underline{x}, \ \underline{x}\hspace{0.03cm}')   ⇒   Hamming–Distanz zwischen den Codeworten  \underline{x}  und  \underline{x}\hspace{0.03cm}'   ⇒   Hamming–Distance between codewords  \underline{x}  and  \underline{x}'

  e= 2.718281828456...   ⇒   Eulersche Zahl   ⇒   Eulerian number

  f   ⇒   (1)  Frequenz, (2)  Anzahl der Bitfehler im Block   ⇒   (1)  frequency, (2) number of bit errors in block 

  f_∗   ⇒   charakteristische Frequenz   ⇒   characteristic frequency
  f_{\rm A}   ⇒   Abtastfrequenz   ⇒   sampling frequency
  f_{\rm P}=1/T_{\rm A}   ⇒   Frequenzperiode der Funktion  \text{P}\{ X(f)\}  bei DFT/IDFT   ⇒   frequency period of function  \text{P}\{ X(f)\}  of DFT/IDFT
  f_{\rm G}   ⇒   Grenzfrequenz   ⇒   cutoff frequency
  f_{\rm Nyq}   ⇒   Nyquistfrequenz   ⇒   Nyquist frequency
  f_{\rm T}   ⇒   Trägerfrequenz   ⇒   carrier frequency
  f_{x}(x)   ⇒   Wahrscheinlichkeitsdichtefunktion  \rm (WDF)  der Zufallsgröße  x   ⇒   probability density function  \rm (PDF)  of random variable  x
  f_{X}(X=x)   ⇒   exaktere Schreibweise der WDF mit Zufallsgröße  X  und Realisierung  x   ⇒   more exact notation of PDF with random variable  X  and realization  x
  f(x) ={\cal H} \{g(x)\}   ⇒   Hilbert–Transformierte der Funktion   g(x)   ⇒   Hilbert transform of function  g(x)

  g

  g_l   ⇒   Rückkopplungskoeffizienten eines Schieberegisters   ⇒   feedback coefficients of a shift register
  g(t)   ⇒   Grundimpuls   ⇒   basic pulse
  g_d(t)   ⇒   Detektionsgrundimpuls   ⇒   basic detection pulse
  g_r(t)   ⇒   Empfangssgrundimpuls   ⇒   basic receiver pulse
  g_s(t)   ⇒   Sendegrundimpuls   ⇒   basic transmission pulse

Lower case letters  h, ... , o


  h   ⇒   Modulationsindex bei FSK   ⇒   modulation index at FSK

  h(t)   ⇒   Impulsantwort   ⇒   impulse response
  h_{ {\rm g}}(t) = {1}/{2}\cdot \big[ h(t) + h(-t)   ⇒   gerader Anteil der Impulsantwort  h(t)   ⇒ even part of the impulse response  h(t)\big]
  h_{ {\rm u}}(t) = {1}/{2}\cdot \big[ h(t) - h(-t) \big]   ⇒   ungerader Anteil der Impulsantwort  h(t)   ⇒ odd part of the impulse response  h(t)
  h(t) = {\rm L}^{-1}\{H_{\rm L}(p)\}\hspace{0.05cm} , \hspace{0.3cm}{\rm briefly}\hspace{0.3cm} h(t) \ \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet \ H_{\rm L}(p)   ⇒   inverse Laplace-Transformation   ⇒   inverse Laplace transform
  h_{\rm MF}(t)   ⇒   Impulsantwort des Matched-Filters  ⇒   impulse response of the Matched Filter
  h_{\mu}^{(N)}   ⇒   relative Häufigkeiten einer diskreten Zufallsfolge der Länge  N   ⇒   relative frequencies of a discrete random sequence of length  N

  i  

  i(t)   ⇒   Stromverlauf   ⇒   current curve

  \rm j   ⇒   imaginäre Einheit   ⇒   imaginary unit

  k   ⇒   (1)  konstanter Faktor,  (2)  Informationsblocklänge bei Blockcodes     ⇒   (1)  constant factor,  (2)  information block length for block codes

  k_{\rm B}= 1.38 \cdot 10 ^{23}\ \rm Ws/s   ⇒   Boltzmann–Konstante   ⇒   Boltzmann's constant
  k_1, \ k_2, \ k_3 \   ⇒   kilometrische Dämpfungskonstanten einer Zweidrahtleitung   ⇒   kilometric attenuation constants of of two-wire lines

  l   ⇒   Leitungslänge   ⇒   line length

  l_{\rm max}   ⇒   maximale Leitungslänge   ⇒   maximum line length

  m   ⇒   Anzahl der Paritybit bei Blockcodes   ⇒   Number of paritybits for block codes

  m_k = {\rm E}\big[x^k \big]   ⇒   Moment  k–ter Ordnung   ⇒   moment of order  k
  m_1   ⇒   erstes Moment  (Mittelwert)   ⇒   first moment  (mean)
  m_2   ⇒   zweites Moment  (Leistung)   ⇒   second moment  (power)
  m_i \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s_i(t)   ⇒   Nachrichten,  die den Signalen  s_i(t)  zugeordnet sind   ⇒   Messages,  associated with the signals  s_i(t)

  n   ⇒   Codewortlänge bei Blockcodes   ⇒   code word length for block codes

  o  

Lower case German umlaut  ö


  {\ddot{o}(t)}   ⇒   vertikale Augenöffnung   ⇒   (vertical)  eye opening

  {\ddot{o}(T_{\rm D})}   ⇒   vertikale Augenöffnung zum Detektionszeitpunkt  T_{\rm D}   ⇒   (vertical)  eye opening at detection time  T_{\rm D}
  {\ddot{o}_{\rm norm}(T_{\rm D})}   ⇒   normierte Augenöffnung zum Detektionszeitpunkt  T_{\rm D}   ⇒   normalized eye opening at detection time  T_{\rm D}


Lower case letters  p, ... , z

  p   ⇒   zweiter Parameter der Binomialverteilung   ⇒   second parameter of binomial distribution

  p= 2\pi f   ⇒   komplexe Frequenz   ⇒   complex frequency
  p_{{\rm o}i}   ⇒   Nullstellen der  p–Übertragungsfunktion  H_{\rm L}(p), \ \ 0 \le i \le Z   ⇒   zeros of the  p–transfer function  H_{\rm L}(p), \ \ 0 \le i \le Z
  p_{{\rm x}i}   ⇒   Polstellen der  p–Übertragungsfunktion  H_{\rm L}(p), \ \ 0 \le i \le N   ⇒   poles of the  p–transfer function  H_{\rm L}(p), \ \ 0 \le i \le N
  p_{\rm bit}   ⇒   Bitfehlerwahrscheinlichkeit   ⇒   bit error probability
  p_{\rm block}   ⇒   Blockfehlerwahrscheinlichkeit   ⇒   block error probability
  p_\mu = {\rm Pr}(z=\mu)   ⇒   mögliche Wahrscheinlichkeiten einer wertdiskreten Zufallsgröße  z   ⇒   possible probabilities of a discrete-value random variable  z
  p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A})   ⇒   Diracpuls im Zeitbereich   ⇒   Dirac delta comb in time domain
  p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A})   ⇒   Verfälschungswahrscheinlichkeit   ⇒   falsification probability
  p_{\rm B\hspace{0.03cm}\vert \hspace{0.03cm}a} = {\rm Pr}(X\hspace{-0.1cm} = {\rm B}\hspace{0.05cm}\vert y \hspace{-0.1cm}= {\rm a})   ⇒   Rückschlusswahrscheinlichkeit   ⇒   inference probability

  q(t)   ⇒   Quellensignal   ⇒   source signal, data signal

  \langle q_\nu \rangle   ⇒   Quellensymbolfolge   ⇒   source symbol sequence
  \{ q_\mu \}   ⇒   Quellensymbolvorrat   ⇒   source symbol set

  r   ⇒   (1)  relative Redundanz,   (2)  Rolloff–Faktor   ⇒   (1)  relative redundancy,   (2)  roll–off factor  

  r_f   ⇒   Rolloff–Faktor im Frequenzbereich   ⇒   roll–off factor in frequency domain 
  r_t   ⇒   Rolloff–Faktor im Zeitbereich   ⇒ roll–off factor in time domain 
  \rm random()   ⇒   C-Aufruf eines Zufallsgenerator für Gleichverteilung   ⇒   C-function of a random number generator for uniformly distributed random variables
  r(t)   ⇒   Empfangssignal   ⇒   received signal
  r_{\rm TP}(t)   ⇒   äquivalentes Tiefpass–Empfangssignal   ⇒   equivalent low-pass received signal



  s(t)   ⇒   Sendesignal   ⇒   transmitted signal

  s_{\rm TP}(t)   ⇒   äquivalentes Tiefpass–Sendesignal   ⇒   equivalent low-pass transmitted signal
  s_{\rm +}(t)   ⇒   analytisches Sendesignal   ⇒   analytic transmitted signal
  \mathbf{s}_i = \big( s_{i1}\hspace{0.05cm}, \hspace{0.3cm}s_{i2}\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm},\hspace{0.05cm} s_{iN} \big )   ⇒   vektorieller Repräsentant der Musterfunktion  s_i(t)   ⇒   vectorial representative of the pattern function  s_i(t)
  \vert \vert s_1(t) \vert \vert   ⇒   Euklidische Norm der Zeitfunktion  s_1(t)   ⇒   Euclidean norm of the time function  s_1(t)
  {\rm sign}(x),\ {\rm sign}(t)   ⇒   Signumfunktion   ⇒   signum  function
  {\rm si}(x)= \sin(x)/x={\rm sinc}(\pi \cdot x)   ⇒   si–Funktion   ⇒   si–function
  {\rm sinc}(x)= \sin(\pi x)/(\pi x)={\rm si}(x/\pi)   ⇒   sinc–Funktion   ⇒   sinc–function


  t   ⇒   Zeit   ⇒   time

  t_\nu   ⇒   zeitliche Folge der Detektionszeitpunkte   ⇒   temporal sequence of detection times

  u(t)   ⇒   Spannungsverlauf   ⇒   voltage curve

  v(t)   ⇒   Sinkensignal   ⇒   sink signal

  \langle v_\mu \rangle   ⇒   Sinkensymbolfolge   ⇒   sink symbol sequence
  \{ v_\nu \}   ⇒   Sinkensymbolvorrat   ⇒   sink symbol set

  w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}   ⇒   komplexer Rotationsfaktor bei DFT/IDFT   ⇒   complex rotation factor at DFT/IDFT

  w(t)   ⇒   zeitdiskrete Fensterfunktion zur Spektralanalyse  ⇒   time-discrrete window function for spectral analysis
  w(\nu)   ⇒   zeitkontinuierliche Fensterfunktion zur Spektralanalyse  ⇒   time-continuous window function for spectral analysis
  w_{\rm H}(\underline{x})   ⇒   Hamming–Gewicht des Codewortes  \underline{x}   ⇒   Hamming weight of code word  \underline{x}

  x   ⇒   wertkontinuierliche Zufallsgröße   ⇒   continuous-value random variable

  x(t)   ⇒   Eingangssignal   ⇒   input signal
  \ddot{x} (t)   ⇒   zweite Ableitung der Funktion  x(t)  nach der Zeit     ⇒   second derivative of the function  x(t)  with respect to time
  x_{\rm A}(t)= {\rm A}\{x(t)\}   ⇒   Abtastung des Signals  x(t)   ⇒   sampling of signal  x(t)
  x_{\rm P}(t)   ⇒   periodisches Signal   ⇒   periodic signal
  x_{\rm Q}(t)   ⇒   quantisiertes Eingangssignal   ⇒   quantized input signal
  x_{\rm g}(t)   ⇒   gerader Anteil des Signals  x(t)   ⇒   even portion of the signal  x(t)
  x_{\rm u}(t)   ⇒   ungerader Anteil des Signals  x(t)   ⇒   odd portion of the signal  x(t)
  x_{\rm TP}(t)   ⇒   äquivalentes Tiefpass–Signal des BP-Signals  x(t)   ⇒   equivalent low-pass signal of band-pass signal  x(t)
  x_{\rm +}(t)   ⇒   analytisches Signal des BP-Signals  x(t)   ⇒   analytical signal of band-pass signal  x(t)
  <\hspace{-0.01cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.01cm}>   ⇒   inneres Produkt der Signale  x(t)  und  y(t)   ⇒   inner product of signals  x(t)  and  y(t)
  x_i(t)   ⇒   i-tes Mustersignal eines Zufallsprozesses   ⇒   i-th pattern signal of a random process
  \{x_i(t)\}   ⇒   Zufallsprozess   ⇒   random process


  y(t) =x(t) \star h(t)   ⇒   Filter–Ausgangssignal  (Faltung von  x(t)  und  h(t))   ⇒   filter output signal  (convolution of input signal and impulse response)

  y(t) \equiv x(t)   ⇒   Merkmal eines idealen Übertragungssystems   ⇒   characteristic of an ideal transmission system
  y(t) = \alpha \cdot x(t - \tau)+n(t)   ⇒   Merkmal eines verzerrungsfreien Übertragungssystems   ⇒   characteristic of a distortion-free, noisy transmission system
  y = g(x) \ne {\rm const.} \cdot x   ⇒   nichtlineare Kennlinie   ⇒   nonlinear characteristic curve
  y(t) = \sum_{i=0}^{\infty}\hspace{0.1cm} c_i \cdot x^{i}(t) = c_0 + c_1 \cdot x(t) + c_2 \cdot x^{2}(t) + c_3 \cdot x^{3}(t) + \hspace{0.05cm}\text{...}   ⇒   Taylorreihe des Ausgangs   ⇒   Taylor series of the output

  z   ⇒   wertdiskrete Zufallsgröße   ⇒   discrete-value random variable

  \langle z_\nu \rangle   ⇒   wertdiskrete Symbolfolge   ⇒   disrete-Value symbol sequence
  z(t)   ⇒   (1)  Trägersignal,   (2)   Taktsignal   ⇒   (1)  carrier signal,   (2)  clock
  z_μ = z(E_μ)   ⇒   wertdiskrete Zufallsgröße, dem Ereignis  E_μ  zugeordnet   ⇒   discrete-value random variable, assigned to the event  E_μ 


Upper case greek letters and special characters (??? \text{...})

  \Delta f   ⇒   äquivalente Bandbreite   ⇒   equivalent bandwidth
  \Delta t   ⇒   äquivalente Zeitdauer der Impulsantwort   ⇒   equivalent duration of the impulse response
  \Delta t_{\rm S}   ⇒   äquivalente Sendeimpulsdauer   ⇒   equivalent pulse duration
  \nabla f   ⇒   ???   ⇒   ????
  \square f   ⇒   äquivalente Rauschbandbreite   ⇒   equivalent noise bandwidth

  {\it \Phi}_n(f)   ⇒   Leistungsdichtespektrum  \rm (LDS)  des Rauschsignals  n(t)    ⇒   power-spectral density  \rm (PSD)  of the noise signal  n(t)
  {\it \Phi}_{\rm NEXT}(f)   ⇒   Stör–LDS durch Nahnebensprechen    ⇒   Interference PSD due to near-end crosstalk on two-wire lines
  {\it \Phi}_s(f)   ⇒   Leistungsdichtespektrum  \rm (LDS)  des Sendesignals  s(t)    ⇒   power-spectral density  \rm (PSD)  of the transmitted signal  s(t)
  {\it \Phi}^{^{\hspace{0.08cm}\bullet}}_{gs}(f) = |G_s(f)|^2   ⇒   Energiespektrum  des Sendegrundimpulses  g_s(t)    ⇒   Energy spectrum  of the basic transmission pulse  g_s(t)


Lower case greek letters  (\alpha, \beta, \text{...})

  \alpha   ⇒   (1)  Dämpfungsfaktor,   (2)  Realteil der komplexen Frequenz  p   ⇒   (1)  attenuation factor per unit length,   (2)  real part of the complex frequency  p

  \alpha(f)=a(f)/l   ⇒   Dämpfungsmaß   ⇒   attenuation function per unit length
  {\alpha}_{\rm K}(f) \hspace{-0.05cm} = \alpha_0 \hspace{-0.05cm}+ \hspace{-0.05cm} \alpha_1 \cdot f \hspace{-0.05cm}+ \hspace{-0.05cm} \alpha_2 \hspace{-0.05cm}\cdot \hspace{-0.05cm}\sqrt {f} \hspace{0.01cm} \hspace{0.01cm}   ⇒   Dämpfungsmaß eines Koaxialkabels   ⇒   attenuation function per unit length of a coaxial cable
  \alpha_0, \ \alpha_1, \ \alpha_2 \   ⇒   kilometrische Dämpfungskonstanten eines Koaxialkabels   ⇒   kilometric attenuation constants of a coaxial cable

  \beta   ⇒   ???   ⇒  

  \beta_1, \ \beta_2 \   ⇒   kilometrische Phasenkonstanten eines Koaxialkabels   ⇒   Kilometric phase constants of a coaxial cable
  \beta(f)=b(f)/l   ⇒   Phasenmaß   ⇒   phase function per unit length

  \gamma(x), \gamma(t)   ⇒   Sprungfunktion   ⇒   unit jump function

  \gamma_0(x)   ⇒   ähnliche Funktion wie  \gamma(x),  aber nicht identisch   ⇒   similar function as  \gamma(x),  but not identical
  \gamma(f)=\alpha(f) + {\rm j} \cdot \beta(f)   ⇒   Übertragungsmaß   ⇒   complex propagation function per unit length

  \delta(x),\ \delta(t)   ⇒   Diracfunktion, Diracimpuls   ⇒   Dirac delta function, Dirac delta impulse

  \delta_{jk}   ⇒   Kronecker–Symbol   ⇒   Kronecker icon

  \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int_{ 0 }^{ T_{\rm M}} {\varepsilon^2(t)}\hspace{0.1cm}{\rm d}t   ⇒   mittlerer quadratischer Fehler  \rm (MQF)  des Fehlersignals  \varepsilon(t)   ⇒   mean squared error  \rm (MSE)  with regard to the error signal  \varepsilon(t)

  \theta   ⇒   absolute Temperatur in  "Kelvin"   ⇒   absolute temperature in  "Kelvin"
  \theta_k(t)   ⇒   Hilfsfunktion für die Gram-Schmidt-Methode   ⇒   auxiliary function for the Gram-Schmidt method

  \kappa  

  \lambda   ⇒   (1)  Wellenlänge,   (2)  Rate der Poisson–Verteilung    ⇒   (1)  wave length,   (2)  rate of Poisson distribution  (proportion of  «ones»  per time interval)

  \mu   ⇒   Laufvariable zur Elementkennzeichnung einer Menge   ⇒   Run variable for element identification of a set

  \mu_k = {\rm E}\big[(x-m_{\rm 1})^k\big]   ⇒   Zentralmoment  k–ter Ordnung   ⇒   central moment of order  k

  \nu   ⇒   Laufvariable zur Symbolkennzeichnung einer zeitlichen Folge   ⇒   Run variable for symbol identification of a temporal sequence

  \nu_i = f_i -f_{\rm T}   ⇒   i-ter relativer Frequenzpunkt bezogen auf die Trägerfrequenz f_{\rm T}  ⇒   i-th relative frequency point with respect to carrier frequency f_{\rm T}

  \rho   ⇒   Signal-zu-Rauschverhältnis  \rm (SNR)   ⇒   signal-to-noise ratio  \rm (SNR)

  10 \cdot \lg\ \rho   ⇒   Signal-zu-Rauschabstand in dB   ⇒   signal-to-noise ratio in dB
  \rho_d   ⇒   SNR des Detektionssignals  d(t)   ⇒   signal-to-noise ratio of the detection signal  d(t)
  \rho_d(T_{\rm D})   ⇒   SNR für den Detektionszeitpunkt  T_{\rm D}   ⇒   SNR for detection time  T_{\rm D}
  \rho_{\rm V} = P_{x}/P_{\rm V}   ⇒   Verzerrungs–SNR   ⇒   signal–to–distortion ratio

  \sigma   ⇒   Streuung, Standardabweichung  x   ⇒   standard deviation

  \sigma_x   ⇒   Streuung der Zufallsgröße  x   ⇒   standard deviation of random variable  x
  \sigma_x^2   ⇒   Varianz der Zufallsgröße  x   ⇒   variance of the random variable  x
  \sigma(t)   ⇒   Sprungantwort  x   ⇒   step response  x

  \tau   ⇒   Laufzeit   ⇒   delay time, transit time

  \tau_{\rm G}(\omega_0) = \left[ \frac{ {\rm d}b(\omega)}{ {\rm d}\omega}\right ]_{\omega = \omega_0}   ⇒   Gruppenlaufzeit   ⇒   group delay time
  \tau_{\rm P}(f_0) = \frac{b(f_0)}{2\pi f_0}   ⇒   Gruppenlaufzeit   ⇒   phase delay time

  \phi   ⇒   (1)  leere Menge,  (2)  unmögliches Ereignis     ⇒     (1)  empty set,   (2)  impossible event of a random experiment;     note:   \rm {Pr}(\phi)=0

  {\rm \phi}(x) = {1}/{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u   ⇒   Gaußsches Fehlerfunktion   ⇒   Gaussian error function

  \varphi = -\phi   ⇒   Nullphasenwinkel   ⇒   zero phase angle

  \varphi_x(t_1,t_2)   ⇒   allgemeine Definition der Autokorrelationsfunktion  \rm (AKF)    ⇒   general definition of the auto-correlation function  \rm (ACF)
  \varphi_{x}(\tau)   ⇒   Autokorrelationsfunktion eines ergodischen Zufallsprozesses  \{x_i(t)\}   ⇒   auto-correlation function of an ergodic random process  \{x_i(t)\}
  \varphi_{j}(t)   ⇒   orthonormale Basisfunktionen zur Signalbeschreibung   ⇒   orthonormal basis functions for signal description
  \varphi^{^{\bullet} }_{gs}(\tau)   ⇒   Energie–AKF des Sendegrundimpulses  g_s(t)   ⇒   energy ACF of the basic transmission pulse  g_s(t)

  \omega = 2\pi f   ⇒   Kreisfrequenz   ⇒   circular frequency

  \omega_{\rm T} = 2\pi f   ⇒   Winkelgeschwindigkeit eines Trägersignals  z(t)   ⇒   angular velocity of a carrier signal  z(t)




Some remarks to the Glossary

\text{Note:} 

  1. The categories are arranged alphabetically,  starting with  »uppercase letters«,  then  »lowercase letters« and finally  »upper and lowercase Greek letters«.
  2. The German umlaut  »\rm {\ddot{o} }«  is assigned its own category;  for example,   {\ddot{o}(T_{\rm D})}  stands for  »eye opening at detection time  T_{\rm D}«.
  3. Within a letter  (e.g. »\rm A«),  the order is no longer alphabetical,  but happens according to thematically related terms.
  4. If a  »formula sign«  has two different meanings like  »E«,  then both are specified;  here:  (1)  »threshold value«,  (2)  »energy«.