Zusammenhang zwischen WDF und VTF (Lernvideo)

From LNTwww
  !!! The learning video is in German language  (images and sound).  There is an English summary at the end of this file !!! 

Teil 1

Definition von Wahrscheinlichkeitsdichtefunktion (WDF) und Verteilungsfunktion (VTF) – Überschreitungswahrscheinlichkeit – WDF und VTF bei diskreten Zufallsgrößen (Dauer 6.35).

Teil 2

Simulation von WDF und VTF – Gleichverteilte Zufallsgröße – Rayleighverteilte Zufallsgröße (Dauer 3:17).

Anmerkungen zur Nomenklatur

In diesem Lernvideo gilt wie im gesamten Lerntutorial "LNTwww" folgende Nomenklatur:

  • $f_x(x)$ ist die Wahrscheinlichkeitsdichtefunktion (WDF, englisch: Probability Density Function, PDF) der Zufallsgröße $x$.
  • $F_{x}(r)$ ist die Verteilungsfunktion (VTF, englisch: Cumulative Distribution Function, CDF). Sie gibt die Wahrscheinlichkeit ${\rm Pr}( x \le r)$ an, dass die Zufallsgröße $x$ kleiner oder gleich einem reellen Zahlenwert $r$ ist.
  • Zwischen diesen beiden Größen besteht der Funtionalzusammenhang   $F_{x}(r) = \int_{-\infty}^{r}f_x(x)\,{\rm d}x.$


In der Literatur wird häufig die WDF mit $f_X(x)$ bezeichnet und die VTF mit $F_X(x)$. Hierbei gibt $X$ die Zufallsgröße an und $x \in X$ eine Realisierung. Die entsprechende Verknüpfungsgleichung lautet dann:   $F_{X}(x) = {\rm Pr}( X \le x) = \int_{-\infty}^{x}f_X(\xi)\,{\rm d}\xi.$


Dieses Lernvideo wurde 2004 am "Lehrstuhl für Nachrichtentechnik" der "Technischen Universität München" konzipiert und realisiert.
Buch und Regie: » Günter Söder « und » Johannes Zangl «,   Sprecher: Joachim Schenk,   Realisierung: » Franz Kohl « und » Ji Li «.

Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von  »Tasnád Kernetzky«  und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern  (wie Firefox, Chrome, Safari)  als auch von Smartphones wiedergegeben werden zu können.



English summary:


Relationship between PDF and CDF

Part 1

Definition of probability density function (PDF) and distribution function (CDF) – Exceedance probability – PDF and CDF for discrete random variables (Duration 6:35).

Part 2

Simulation of PDF and CDF – Uniformly distributed random variable – Rayleigh distributed random variable (Duration 3:17).

About the nomenclature

In this learning video, as in the entire learning tutorial "LNTwww", the following nomenclature applies:

  • $f_x(x)$ is the probability density function (PDF) of the random variable $x$.
  • $F_{x}(r)$ is the cumulative distribution function (CDF). It gives the probability ${\rm Pr}( x \le r)$ that the random variable $x$ is less than or equal to a real number value $r$.
  • There is the functional relation between these two quantities   $F_{x}(r) = \int_{-\infty}^{r}f_x(x)\,{\rm d}x.$


In the literature, the PDF is often denoted by $f_X(x)$ and the CDF by $F_X(x)$. Here $X$ indicates the random variable and $x \in X$ a realization. The corresponding link equation is then:   $F_{X}(x) = {\rm Pr}( X \le x) = \int_{-\infty}^{x}f_X(\xi)\,{\rm d}\xi.$


This educational video was conceived and realized in 2004 at the  "Chair of Communications Engineering"  of the  "Technical University of Munich"