Difference between revisions of "Aufgaben:Exercise 2.3: Cosine and Sine Components"
Line 7: | Line 7: | ||
Gegeben ist das Amplitudenspektrum $X(f)$ eines Signals $x(t)$ entsprechend der siehe Grafik. | Gegeben ist das Amplitudenspektrum $X(f)$ eines Signals $x(t)$ entsprechend der siehe Grafik. | ||
Die Normierungsfrequenz sei $f_1 = 4\,\text{kHz}$ . Damit liegen die tatsächlichen Frequenzen der Signalanteile bei $0\,\text{kHz}$, $4\,\text{kHz}$ und $10\,\text{kHz}$ . | Die Normierungsfrequenz sei $f_1 = 4\,\text{kHz}$ . Damit liegen die tatsächlichen Frequenzen der Signalanteile bei $0\,\text{kHz}$, $4\,\text{kHz}$ und $10\,\text{kHz}$ . | ||
+ | |||
Dieses Signal $x(t)$ liegt am Eingang eines linearen Differenzierers, dessen Ausgang mit $\omega_1 = 2\pi f_1$ wie folgt dargestellt werden kann: | Dieses Signal $x(t)$ liegt am Eingang eines linearen Differenzierers, dessen Ausgang mit $\omega_1 = 2\pi f_1$ wie folgt dargestellt werden kann: | ||
Line 49: | Line 50: | ||
$$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$ | $$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$ | ||
− | Hierbei bezeichnet $\omega_1 = 2\pi f_1$ die Kreisfrequenz des Cosinusanteils. Zum Zeitpunkt $t = 0$ hat das Signal den Wert ${1\,\rm V}$. | + | Hierbei bezeichnet $\omega_1 = 2\pi f_1$ die Kreisfrequenz des Cosinusanteils. Zum Zeitpunkt $t = 0$ hat das Signal den Wert $\underline{1\,\rm V}$. |
[[File:P_ID293__Sig_A_2_3_a.png|Summensignal aus Cosinus- und Sinusanteilen]] | [[File:P_ID293__Sig_A_2_3_a.png|Summensignal aus Cosinus- und Sinusanteilen]] | ||
− | '''2.''' Die Grundfrequenz $f_0$ ist der kleinste gemeinsame Teiler von $f_1 = 4$ | + | '''2.''' Die Grundfrequenz $f_0$ ist der kleinste gemeinsame Teiler von $f_1 = 4{\,\rm kHz}$ und $2.5 · f_1 = 10{\,\rm kHz}$ $2.5 · f_1$. Daraus folgt $f_1 = 4{\,\rm kHz}$ ⇒ Periodendauer $T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}$. |
+ | |||
+ | [[File:P_ID294__Sig_A_2_3_d_neu.png|right|300px|Spektrum mit diskreten Anteilen]] | ||
'''3.''' Für das Ausgangssignal $y(t)$ des Differenzierers gilt: | '''3.''' Für das Ausgangssignal $y(t)$ des Differenzierers gilt: | ||
Line 63: | Line 66: | ||
$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$ | $$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$ | ||
− | + | Für $t = 0$ ergibt sich der Wert $\underline{10\,\rm V}$. | |
− | + | Rechts sehen Sie das Spektrum $Y(f)$. | |
− | Für | ||
− | '''4.''' Die Periodendauer $T_0$ wird durch die Amplitude und die Phase der beiden Anteile nicht verändert. Das bedeutet, dass weiterhin $T_0 | + | '''4.''' Richtig sind somit die <u>Lösungsvorschläge 1 und 4</u>: |
− | Der Gleichanteil verschwindet aufgrund der Differentiation. Der Anteil bei $f_1$ ist sinusförmig. Somit hat $X(f)$ einen (imaginären) Dirac bei $f = f_1$, jedoch mit negativem Vorzeichen. Der Cosinusanteil mit der Amplitude 10 V hat die beiden Diracfunktionen bei $\pm 2.5 \cdot f_1$ zur Folge, jeweils mit dem Gewicht 5 V | + | *Die Periodendauer $T_0$ wird durch die Amplitude und die Phase der beiden Anteile nicht verändert. Das bedeutet, dass weiterhin $T_0 = 0.5 {\,\rm ms}$ gilt. |
+ | *Der Gleichanteil verschwindet aufgrund der Differentiation. | ||
+ | *Der Anteil bei $f_1$ ist sinusförmig. Somit hat $X(f)$ einen (imaginären) Dirac bei $f = f_1$, jedoch mit negativem Vorzeichen. | ||
+ | *Der Cosinusanteil mit der Amplitude ${10\,\rm V}$ hat die beiden Diracfunktionen bei $\pm 2.5 \cdot f_1$ zur Folge, jeweils mit dem Gewicht ${5\,\rm V}$ . | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]] | [[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]] |
Revision as of 15:10, 15 January 2017
Gegeben ist das Amplitudenspektrum $X(f)$ eines Signals $x(t)$ entsprechend der siehe Grafik. Die Normierungsfrequenz sei $f_1 = 4\,\text{kHz}$ . Damit liegen die tatsächlichen Frequenzen der Signalanteile bei $0\,\text{kHz}$, $4\,\text{kHz}$ und $10\,\text{kHz}$ .
Dieses Signal $x(t)$ liegt am Eingang eines linearen Differenzierers, dessen Ausgang mit $\omega_1 = 2\pi f_1$ wie folgt dargestellt werden kann:
$$y(t)=\frac{1}{\omega_1}\cdot\frac{\rm d \it x(t)}{\rm d \it t}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Harmonische Schwingung.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
$$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$
Hierbei bezeichnet $\omega_1 = 2\pi f_1$ die Kreisfrequenz des Cosinusanteils. Zum Zeitpunkt $t = 0$ hat das Signal den Wert $\underline{1\,\rm V}$.
2. Die Grundfrequenz $f_0$ ist der kleinste gemeinsame Teiler von $f_1 = 4{\,\rm kHz}$ und $2.5 · f_1 = 10{\,\rm kHz}$ $2.5 · f_1$. Daraus folgt $f_1 = 4{\,\rm kHz}$ ⇒ Periodendauer $T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}$.
3. Für das Ausgangssignal $y(t)$ des Differenzierers gilt:
$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).$$
Dies führt zum Ergebnis:
$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$
Für $t = 0$ ergibt sich der Wert $\underline{10\,\rm V}$. Rechts sehen Sie das Spektrum $Y(f)$.
4. Richtig sind somit die Lösungsvorschläge 1 und 4:
- Die Periodendauer $T_0$ wird durch die Amplitude und die Phase der beiden Anteile nicht verändert. Das bedeutet, dass weiterhin $T_0 = 0.5 {\,\rm ms}$ gilt.
- Der Gleichanteil verschwindet aufgrund der Differentiation.
- Der Anteil bei $f_1$ ist sinusförmig. Somit hat $X(f)$ einen (imaginären) Dirac bei $f = f_1$, jedoch mit negativem Vorzeichen.
- Der Cosinusanteil mit der Amplitude ${10\,\rm V}$ hat die beiden Diracfunktionen bei $\pm 2.5 \cdot f_1$ zur Folge, jeweils mit dem Gewicht ${5\,\rm V}$ .