Difference between revisions of "Aufgaben:Exercise 2.3: Sinusoidal Characteristic"

From LNTwww
Line 82: Line 82:
 
Anzumerken ist, dass bei der Näherung $g_3(x)$ nur der kubische Anteil $K_3$ des Klirrfaktors wirksam ist. Für $A = 1.0$ und $A = 1.5$ ergeben sich folgende Zahlenwerte:
 
Anzumerken ist, dass bei der Näherung $g_3(x)$ nur der kubische Anteil $K_3$ des Klirrfaktors wirksam ist. Für $A = 1.0$ und $A = 1.5$ ergeben sich folgende Zahlenwerte:
 
$$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx
 
$$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx
-0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%},$$
+
-0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%}\; \; \Rightarrow \; \; K_{g3},$$
 
$$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx
 
$$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx
 
-0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$
 
-0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$
  
'''(3)'''  In ähnlicher Weise wie beim Unterpunkt 2) gilt nun
+
'''(3)'''  In ähnlicher Weise wie beim Unterpunkt (2) gilt nun
:$$y(t) = A_1 \cdot {\rm cos}(\omega_0  t ) + A_3 \cdot {\rm
+
$$y(t) = A_1 \cdot {\rm cos}(\omega_0  t ) + A_3 \cdot {\rm
 
cos}(3\omega_0  t )+ A_5 \cdot {\rm cos}(5\omega_0  t )$$
 
cos}(3\omega_0  t )+ A_5 \cdot {\rm cos}(5\omega_0  t )$$
  
:mit folgenden Koeffizienten:
+
mit folgenden Koeffizienten:
:$$A_1 = A  - \frac{A^3}{8} + \frac{A^5}{192},\hspace{0.3cm}
+
$$A_1 = A  - {A^3}\hspace{-0.1cm}/{8} + {A^5}\hspace{-0.1cm}/{192},\hspace{0.3cm}
A_3 =  - \frac{A^3}{24} + \frac{A^5}{384},\hspace{0.3cm}
+
A_3 =  - {A^3}\hspace{-0.1cm}/{24} + {A^5}\hspace{-0.1cm}/{384},\hspace{0.3cm}
A_5 = \frac{A^5}{1920}.$$
+
A_5 = {A^5}\hspace{-0.1cm}/{1920}.$$
  
:Daraus ergeben sich mit <i>A</i> = 1 die Zahlenwerte:
+
Daraus ergeben sich mit $A=1$ die Zahlenwerte:
:$$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm}
+
$$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm}
 
A_3 \approx  -0.042 +0.003 = -0.039,\hspace{0.3cm}
 
A_3 \approx  -0.042 +0.003 = -0.039,\hspace{0.3cm}
 
A_5 \approx 0.0005$$
 
A_5 \approx 0.0005$$
:$$\Rightarrow \hspace{0.3cm}K_3 = \frac{|A_3|}{A_1}= 0.0443,\hspace{0.3cm}K_5 =
+
$$\Rightarrow \hspace{0.3cm}K_3 = {|A_3|}/{A_1}= 0.0443,\hspace{0.3cm}K_5 =
\frac{|A_5|}{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2}  \hspace{0.15cm}\underline{\approx 4.45\%}.$$
+
{|A_5|}/{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2}  \hspace{0.15cm}\underline{\approx 4.45\%}
 +
\; \; \Rightarrow \; \; K_{g5}.$$
  
'''(4)'''&nbsp; Der Ansatz <i>g</i><sub>5</sub>(<i>x</i>) ist im gesamten Bereich eine bessere Näherung für die Sinusfunktion <i>g</i>(<i>x</i>) als die Näherung <i>g</i><sub>3</sub>(<i>x</i>). Deshalb ist der in der Teilaufgabe c) berechnete Wert <i>K</i><sub>c</sub> eine bessere Näherung für den tatsächlichen Klirrfaktor <i>K</i> als <i>K<sub>b</sub></i> &ndash; die erste Aussage ist somit richtig.
+
'''(4)'''&nbsp; Der Ansatz $g_5(x)$ ist im gesamten Bereich eine bessere Näherung für die Sinusfunktion $g(x)$ als die Näherung $g_3(x)$. Deshalb ist der in der Teilaufgabe (3) berechnete Wert $K_{g5}$ eine bessere Näherung für den tatsächlichen Klirrfaktor als $K_{g3}$ &ndash; die erste Aussage ist somit richtig.
  
:Dagegen ist die zweite Aussage falsch, wie schon die Berechnung gezeigt hat <i>K<sub>b</sub></i> = 4.76 % ist größer als <i>K<sub>c</sub></i>  = 4.45 %. Der Grund hierfür ist, dass <i>g</i><sub>3</sub>(<i>x</i>) unterhalb von <i>g</i><sub>5</sub>(<i>x</i>) liegt und damit auch eine größere Abweichung vom linearen Verlauf vorliegt.
+
Dagegen ist die zweite Aussage falsch, wie schon die Berechnung für $A=1$ gezeigt hat, ist  $K_{g3} \approx 4.76 \%$ ist größer als $K_{g5} \approx 4.45 \%$. Der Grund hierfür ist, dass $g_3(x)$ unterhalb von $g_5(x)$ liegt und damit auch eine größere Abweichung vom linearen Verlauf vorliegt.
  
:Für <i>A</i> = 0.5 wird <i>K<sub>c</sub></i> &asymp; <i>K<sub>b</sub></i> gelten. Schon die Kennlinie auf der Angabenseite zeigt, dass für |<i>x</i>| &#8804; 0.5 die beiden Funktionen <i>g</i><sub>3</sub>(<i>x</i>) und <i>g</i><sub>5</sub>(<i>x</i>) innerhalb der Zeichengenauigkeit nicht zu unterscheiden sind. Damit ergeben sich auch gleiche Klirrfaktoren. Richtig sind also die <u>Lösungsvorschläge 1 und 3</u>
+
Für $A=0.5$ wird $K_{g5} \approx K_{g5} = 1.08 \%$gelten. Schon die Kennlinie auf der Angabenseite zeigt, dass für $|x| \le 0.5$ die beiden Funktionen $g_3(x)$ und $g_5(x)innerhalb der Zeichengenauigkeit nicht zu unterscheiden sind. Damit ergeben sich auch gleiche Klirrfaktoren. Richtig sind also die <u>Lösungsvorschläge 1 und 3</u>
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 11:05, 2 February 2017

Sinusförmige Kennlinie

Wie betrachten ein System mit Eingang $x(t)$ und Ausgang $y(t)$. Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet.

Der Zusammenhang zwischen dem Eingangssignal $x(t)$ und dem Ausgangssignal $y(t)$ ist im Bereich zwischen $-\pi/2$ und $+\pi/2$ durch die folgende Kennlinie gegeben. $$g(x) = \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \hspace{0.05cm}...$$

Der zweite Teil dieser Gleichung beschreibt dabei die Reihenentwicklung der Sinusfunktion. Als Näherungen für die nichtlineare Kennlinie werden in dieser Aufgabe verwendet: $$g_1(x) = x\hspace{0.05cm},$$ $$ g_3(x) = x- x^{3}\hspace{-0.1cm}/6\hspace{0.05cm},$$ $$g_5(x) = x- x^3\hspace{-0.1cm}/{6}+x^5\hspace{-0.1cm}/{120}\hspace{0.05cm}.$$

Es wird stets das Eingangssignal $x(t) = A \cdot \cos(\omega_0 \cdot t)$ vorausgesetzt, wobei für die (dimensionslose) Signalamplitude die Werte $A = 0.5$, $A = 1.0$ und $A = 1.5$ zu betrachten sind.

Hinweise:

  • Die Aufgabe bezieht sich auf das Kapitel Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
  • Die sich ergebenden Signalverläufe für $x(t)$ und $y(t)$ sind im Beispiel auf der Seite Beschreibung nichtlinearer Systeme grafisch dargestellt.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Alle hier abgefragten Leistungen beziehen sich auf den Widerstand $R = 1 \ \rm \Omega$ und haben somit die Einheit ${\rm V}^2$
  • Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:

$$\cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}, $$ $$ \cos^5(\alpha) = {10}/{16} \cdot \cos(\alpha) + {5}/{16} \cdot \cos(3\alpha) + {1}/{16} \cdot \cos(5\alpha)\hspace{0.05cm}.$$


Fragebogen

1

Welchen Klirrfaktor $K$ erhält man mit der Kennliniennäherung $g_1(x)$ unabhängig von der Amplitude $A$ des Eingangssignals?

$g_1(x)\hspace{-0.08cm}:\ \ K \ = $

$\ \%$

2

Berechnen Sie den Klirrfaktor $K$ für das Eingangssignal $x(t) = A \cdot \cos(\omega_0 \cdot t)$ und die Näherung $g_3(x)$. Welche Werte ergeben sich für $A = 0.5$ und $A = 1.0$?

$g_3(x),\ A = 0.5\hspace{-0.08cm}:\ \ K \ = $

$\ \%$
$g_3(x),\ A = 1.0\hspace{-0.08cm}:\ \ K \ = $

$\ \%$

3

Wie lautet der Klirrfaktor für $A = 1.0$ unter Berücksichtigung der Näherung $g_5(x)$?

$g_5(x),\ A = 1.0\hspace{-0.08cm}:\ \ K = $

$\ \%$

4

Welche der folgenden Aussagen treffen zu? Hierbei bezeichnet $K$ den Klirrfaktor der Sinusfunktion $g(x)$, während $K_{\rm g3}$ und $K_{\rm g5}$ auf den Näherungen $g_3(x)$ und $g_5(x)$ basieren.

$K_{\rm g5}$ stellt im Allgemeinen eine bessere Näherung für $K$ dar als $K_{\rm g3}$.
Für $A = 1.0$ ist $K_{\rm g3}$ kleiner als $K_{\rm g5}$.
Für $A = 0.5$ wird $K_{\rm g3} \approx K_{\rm g5}$ gelten.


Musterlösung

(1)  Die sehr ungenaue Näherung $g_1(x) = x$ ist linear in $x$ und führt deshalb auch nicht zu nichtlinearen Verzerrungen. Damit ergibt sich für den Klirrfaktor $\underline{K = 0}$.

(2)  Das analytische Spektrum (nur positive Frequenzen) des Eingangssignals lautet: $$X_+(f) = A \cdot {\rm \delta}(f- f_0) .$$

Am Ausgang der nichtlinearen Kennlinie $g_3(x)$ liegt dann folgendes Signal an: $$y(t) = A \cdot {\rm cos}(\omega_0 t ) - \frac{A^3}{6} \cdot {\rm cos}^3(\omega_0 t )= A \cdot {\rm cos}(\omega_0 t ) - \frac{3}{4} \cdot \frac{A^3}{6} \cdot {\rm cos}(\omega_0 t )- \frac{1}{4} \cdot \frac{A^3}{6} \cdot {\rm cos}(3\omega_0 t ) = A_1 \cdot {\rm cos}(\omega_0 t ) + A_3 \cdot {\rm cos}(3\omega_0 t ).$$

Für die Koeffizienten $A_1$ und $A_3$ erhält man durch Koeffizientenvergleich: $$A_1 = A - {A^3}\hspace{-0.1cm}/{8}, \hspace{0.5cm}A_3 = - {A^3}\hspace{-0.1cm}/{24}.$$

Mit $A = 0.5$ ergibt sich $A_1 \approx 0.484$ und $A_3 \approx 0.005$. Somit lautet der Klirrfaktor: $$K = K_3 ={|A_3|}/{A_1}= {0.005}/{0.484} \hspace{0.15cm}\underline{ = 1.08\%}.$$

Anzumerken ist, dass bei der Näherung $g_3(x)$ nur der kubische Anteil $K_3$ des Klirrfaktors wirksam ist. Für $A = 1.0$ und $A = 1.5$ ergeben sich folgende Zahlenwerte: $$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx -0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%}\; \; \Rightarrow \; \; K_{g3},$$ $$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx -0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$

(3)  In ähnlicher Weise wie beim Unterpunkt (2) gilt nun $$y(t) = A_1 \cdot {\rm cos}(\omega_0 t ) + A_3 \cdot {\rm cos}(3\omega_0 t )+ A_5 \cdot {\rm cos}(5\omega_0 t )$$

mit folgenden Koeffizienten: $$A_1 = A - {A^3}\hspace{-0.1cm}/{8} + {A^5}\hspace{-0.1cm}/{192},\hspace{0.3cm} A_3 = - {A^3}\hspace{-0.1cm}/{24} + {A^5}\hspace{-0.1cm}/{384},\hspace{0.3cm} A_5 = {A^5}\hspace{-0.1cm}/{1920}.$$

Daraus ergeben sich mit $A=1$ die Zahlenwerte: $$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm} A_3 \approx -0.042 +0.003 = -0.039,\hspace{0.3cm} A_5 \approx 0.0005$$ $$\Rightarrow \hspace{0.3cm}K_3 = {|A_3|}/{A_1}= 0.0443,\hspace{0.3cm}K_5 = {|A_5|}/{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2} \hspace{0.15cm}\underline{\approx 4.45\%} \; \; \Rightarrow \; \; K_{g5}.$$

(4)  Der Ansatz $g_5(x)$ ist im gesamten Bereich eine bessere Näherung für die Sinusfunktion $g(x)$ als die Näherung $g_3(x)$. Deshalb ist der in der Teilaufgabe (3) berechnete Wert $K_{g5}$ eine bessere Näherung für den tatsächlichen Klirrfaktor als $K_{g3}$ – die erste Aussage ist somit richtig.

Dagegen ist die zweite Aussage falsch, wie schon die Berechnung für $A=1$ gezeigt hat, ist $K_{g3} \approx 4.76 \%$ ist größer als $K_{g5} \approx 4.45 \%$. Der Grund hierfür ist, dass $g_3(x)$ unterhalb von $g_5(x)$ liegt und damit auch eine größere Abweichung vom linearen Verlauf vorliegt.

Für $A=0.5$ wird $K_{g5} \approx K_{g5} = 1.08 \%$gelten. Schon die Kennlinie auf der Angabenseite zeigt, dass für $|x| \le 0.5$ die beiden Funktionen $g_3(x)$ und $g_5(x)$ innerhalb der Zeichengenauigkeit nicht zu unterscheiden sind. Damit ergeben sich auch gleiche Klirrfaktoren. Richtig sind also die Lösungsvorschläge 1 und 3