Difference between revisions of "Exercise 2.4Z: Characteristics Measurement"

From LNTwww
m (Markus verschob die Seite Zusatzaufgaben:2.4 Kennlinienvermessung nach 2.4Z Kennlinienvermessung, ohne dabei eine Weiterleitung anzulegen)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID898__LZI_Z_2_4.png|right|]]
+
[[File:P_ID898__LZI_Z_2_4.png|right|Kennlinienvermessung]]
:Von einem nichtlinearen System ist bekannt, dass die Kennlinie durch folgende Gleichung dargestellt werden kann:
+
Von einem nichtlinearen System ist bekannt, dass die Kennlinie durch folgende Gleichung dargestellt werden kann:
:$$y(t) =  c_1  \cdot x(t) + c_2  \cdot x^2(t).$$
+
$$y(t) =  c_1  \cdot x(t) + c_2  \cdot x^2(t).$$
  
:Da die Verzerrungen nichtlinear sind, ist kein Frequenzgang <i>H</i>(<i>f</i>) angebbar.
+
Da die Verzerrungen nichtlinear sind, ist kein Frequenzgang $H(f)$ angebbar.
  
:Zur Bestimmung des dimensionslosen Koeffizienten <i>c</i><sub>1</sub> sowie des quadratischen Koeffizienten <i>c</i><sub>2</sub> werden nun verschiedene Rechteckimpulse <i>x</i>(<i>t</i>) &ndash; gekennzeichnet durch ihre Amplituden <i>A<sub>x</sub></i> und Breiten <i>T<sub>x</sub></i> &ndash; an den Eingang gelegt und jeweils die Impulsamplitude <i>A<sub>y</sub></i> am Ausgang gemessen. Nach drei Versuchen ergeben sich folgende Werte:
+
Zur Bestimmung des dimensionslosen Koeffizienten$c_1$ sowie des quadratischen Koeffizienten $c_2$ werden nun verschiedene Rechteckimpulse $x(t)$ &ndash; jeweils gekennzeichnet durch ihre Amplituden $A_x$ und Breiten $T_x$ &ndash; an den Eingang gelegt und jeweils die Impulsamplitude $A_y$ am Ausgang gemessen. Die ersten drei Versuchen ergeben folgende Werte:
 +
* $A_x = 1 \ {\rm V}, \; \; T_x = 8 \ {\rm ms}$ :&nbsp;&nbsp; $A_y = 0.55 \ {\rm V}$,
 +
* $A_x = 2 \ {\rm V}, \; \; T_x = 4 \ {\rm ms}$ :&nbsp;&nbsp; $A_y = 1.20 \ {\rm V}$,
 +
* $A_x = 3 \ {\rm V}, \; \; T_x = 2 \ {\rm ms}$ :&nbsp;&nbsp; $A_y = 1.95 \ {\rm V}$.
  
:* <i>A<sub>x</sub></i> = 1 V, <i>T<sub>x</sub></i> = 8 ms:&nbsp;&nbsp; <i>A<sub>y</sub></i> = 0.55 V,
+
Bei den Teilaufgaben (3) und (4) sei das Eingangssignal $x(t)$ eine harmonische Schwingung, da nur für eine solche ein Klirrfaktor angebbar ist.  
  
:* <i>A<sub>x</sub></i> = 2 V, <i>T<sub>x</sub></i> = 4 ms:&nbsp;&nbsp; <i>A<sub>y</sub></i> = 1.20 V,
+
Dagegen wird für die Teilaufgabe (5) ein Dreieckimpuls mit Amplitude $A_x = 3 \ {\rm V}$ und der einseitigen Impulsdauer $T_x = 2 \ {\rm ms}$ betrachtet:
 +
$$x(t) = A_x \cdot \left[ 1 - {|t|}/{T_x}\right]  $$
  
:* <i>A<sub>x</sub></i> = 3 V, <i>T<sub>x</sub></i> = 2 ms:&nbsp;&nbsp; <i>A<sub>y</sub></i> = 1.95 V.
 
  
:Bei den Teilaufgaben 3) und 4) sei das Eingangssignal <i>x</i>(<i>t</i>) eine harmonische Schwingung, da nur für eine solche ein Klirrfaktor angebbar ist. Dagegen wird für die Teilaufgabe e) ein Dreieckimpuls
+
''Hinweise:''
:$$x(t) = A_x \cdot \left[ 1 -\frac{|t|}{T_x}\right] $$
+
*Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
 
+
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
:mit der Amplitude <i>A<sub>x</sub></i> = 3 V und der einseitigen Impulsdauer <i>T<sub>x</sub></i> = 2 ms betrachtet. Im Fragenkatalog werden folgende Abkürzungen benutzt:
+
*Im Fragenkatalog werden folgende Abkürzungen benutzt:
:$$y_1(t) =  c_1  \cdot x(t), \hspace{0.5cm} y_2(t) = c_2  \cdot
+
$$y_1(t) =  c_1  \cdot x(t), \hspace{0.5cm} y_2(t) = c_2  \cdot
 
x^2(t).$$
 
x^2(t).$$
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.2.
 
  
  
Line 30: Line 32:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen treffen für den Ausgangsimpuls <i>y</i>(<i>t</i>) zu, wenn am Eingang ein Rechteckimpuls <i>x</i>(<i>t</i>) mit Amplitude <i>A<sub>x</sub></i> und Dauer <i>T<sub>x</sub></i> anliegt?
+
{Welche Aussagen treffen für den Ausgangsimpuls $y(t)$ zu, wenn am Eingang ein Rechteckimpuls $x(t)$ mit Amplitude $A_x$ und Dauer $T_x$ anliegt?
 
|type="[]"}
 
|type="[]"}
- Der Ausgangsimpuls <i>y</i>(<i>t</i>) ist dreieckförmig.
+
- Der Ausgangsimpuls $y(t)$ ist dreieckförmig.
- Die Amplituden am Eingang und Ausgang sind gleich (<i>A<sub>y</sub></i> = <i>A<sub>x</sub></i>).
+
- Die Amplituden am Eingang und Ausgang sind gleich &nbsp; &rArr; &nbsp; $A_y = A_x$.
+ Die Impulsdauer wird durch das System nicht verändert (<i>T<sub>y</sub></i> = <i>T<sub>x</sub></i>).
+
+ Die Impulsdauer wird durch das System nicht verändert &nbsp; &rArr; &nbsp; $T_y = T_x$.
  
  
{Berechnen Sie die beiden Koeffizienten der Taylorreihe.
+
{Berechnen Sie die beiden ersten (dimensionslosen) Koeffizienten der Taylorreihe.
 
|type="{}"}
 
|type="{}"}
$c_1$ = { 0.5 3% }
+
$c_1 \ =$ { 0.5 3% }
$c_2$ = { 0.05 3% } $1/v$
+
$c_2 \ =$ { 0.05 3% } $\ \rm 1/V$
  
  
{Welcher Klirrfaktor wird mit dem Testsignal <i>x</i>(<i>t</i>) = 1 V &middot; cos(<i>&omega;</i><sub>0</sub><i>t</i>) gemessen?
+
{Welcher Klirrfaktor $K$ wird mit dem Testsignal $x(t) = 1 \ {\rm V} \cdot \cos(\omega_0 \cdot t)$ gemessen?
 
|type="{}"}
 
|type="{}"}
$A_x = 1 V:\ \ K$ = { 5 3% } %
+
$A_x = 1\ \rm  V$: $\ \ K \ =$ { 5 3% } $\ \%$
  
  
{Welcher Klirrfaktor wird mit <i>x</i>(<i>t</i>) = 3 V &middot; cos(<i>&omega;</i><sub>0</sub><i>t</i>) gemessen?
+
{Welcher Klirrfaktor wird mit dem Testsignal $x(t) = 3 \ {\rm V} \cdot \cos(\omega_0 \cdot t)$ gemessen?
 
|type="{}"}
 
|type="{}"}
$A_x = 3 V:\ \ K$ = { 15 3% } %
+
$A_x = 3\ \rm  V$: $\ \ K \ =$ { 15 3% } $\ \%$
  
  
{Welcher Ausgangsimpuls <i>y</i>(<i>t</i>) ergibt sich bei dreieckförmigem Eingangsimpuls? Wie lauten die Signalwerte bei <i>t</i> = 0 und <i>t</i> = <i>T<sub>x</sub></i>/2?
+
{Welcher Ausgangsimpuls $y(t)$ ergibt sich bei dreieckförmigem Eingangsimpuls? Wie lauten die Signalwerte bei $ t = 0$ und $ t = T_x/2$ <i>t</i> ?
 
|type="{}"}
 
|type="{}"}
$y(t = 0)$ = { 1.95 3% } $V$
+
$y(t = 0) \ = $ { 1.95 3% } $\ \rm V$
$y(t = T_x/2)$ = { 0.8625 3% } $V$
+
$y(t = T_x/2) \ = $ { 0.8625 3% } $\ \rm V$
  
  

Revision as of 15:26, 2 February 2017

Kennlinienvermessung

Von einem nichtlinearen System ist bekannt, dass die Kennlinie durch folgende Gleichung dargestellt werden kann: $$y(t) = c_1 \cdot x(t) + c_2 \cdot x^2(t).$$

Da die Verzerrungen nichtlinear sind, ist kein Frequenzgang $H(f)$ angebbar.

Zur Bestimmung des dimensionslosen Koeffizienten$c_1$ sowie des quadratischen Koeffizienten $c_2$ werden nun verschiedene Rechteckimpulse $x(t)$ – jeweils gekennzeichnet durch ihre Amplituden $A_x$ und Breiten $T_x$ – an den Eingang gelegt und jeweils die Impulsamplitude $A_y$ am Ausgang gemessen. Die ersten drei Versuchen ergeben folgende Werte:

  • $A_x = 1 \ {\rm V}, \; \; T_x = 8 \ {\rm ms}$ :   $A_y = 0.55 \ {\rm V}$,
  • $A_x = 2 \ {\rm V}, \; \; T_x = 4 \ {\rm ms}$ :   $A_y = 1.20 \ {\rm V}$,
  • $A_x = 3 \ {\rm V}, \; \; T_x = 2 \ {\rm ms}$ :   $A_y = 1.95 \ {\rm V}$.

Bei den Teilaufgaben (3) und (4) sei das Eingangssignal $x(t)$ eine harmonische Schwingung, da nur für eine solche ein Klirrfaktor angebbar ist.

Dagegen wird für die Teilaufgabe (5) ein Dreieckimpuls mit Amplitude $A_x = 3 \ {\rm V}$ und der einseitigen Impulsdauer $T_x = 2 \ {\rm ms}$ betrachtet: $$x(t) = A_x \cdot \left[ 1 - {|t|}/{T_x}\right] $$


Hinweise:

  • Die Aufgabe gehört zum Kapitel Nichtlineare Verzerrungen.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Im Fragenkatalog werden folgende Abkürzungen benutzt:

$$y_1(t) = c_1 \cdot x(t), \hspace{0.5cm} y_2(t) = c_2 \cdot x^2(t).$$


Fragebogen

1

Welche Aussagen treffen für den Ausgangsimpuls $y(t)$ zu, wenn am Eingang ein Rechteckimpuls $x(t)$ mit Amplitude $A_x$ und Dauer $T_x$ anliegt?

Der Ausgangsimpuls $y(t)$ ist dreieckförmig.
Die Amplituden am Eingang und Ausgang sind gleich   ⇒   $A_y = A_x$.
Die Impulsdauer wird durch das System nicht verändert   ⇒   $T_y = T_x$.

2

Berechnen Sie die beiden ersten (dimensionslosen) Koeffizienten der Taylorreihe.

$c_1 \ =$

$c_2 \ =$

$\ \rm 1/V$

3

Welcher Klirrfaktor $K$ wird mit dem Testsignal $x(t) = 1 \ {\rm V} \cdot \cos(\omega_0 \cdot t)$ gemessen?

$A_x = 1\ \rm V$: $\ \ K \ =$

$\ \%$

4

Welcher Klirrfaktor wird mit dem Testsignal $x(t) = 3 \ {\rm V} \cdot \cos(\omega_0 \cdot t)$ gemessen?

$A_x = 3\ \rm V$: $\ \ K \ =$

$\ \%$

5

Welcher Ausgangsimpuls $y(t)$ ergibt sich bei dreieckförmigem Eingangsimpuls? Wie lauten die Signalwerte bei $ t = 0$ und $ t = T_x/2$ t ?

$y(t = 0) \ = $

$\ \rm V$
$y(t = T_x/2) \ = $

$\ \rm V$


Musterlösung

1.  Ist der Eingangsimpuls x(t) rechteckförmig, so ist auch x2(t) ein Rechteck mit Höhe Ax2 im Bereich von 0 bis Tx und außerhalb 0. Auch das gesamte Ausgangssignal y(t) ist somit rechteckförmig mit der Amplitude
$$A_y= c_1 \cdot A_x + c_2 \cdot A_x^2 .$$
Für die Impulsdauer gilt Ty = Tx. Richtig ist also nur der letzte Lösungsvorschlag.
2.  Mit den beiden ersten Parametersätzen kann folgendes lineares Gleichungssystem angegeben werden:
$$c_1 \cdot 1\,{\rm V} + c_2 \cdot (1\,{\rm V})^2 = 0.55\,{\rm V},\\ c_1 \cdot 2\,{\rm V} + c_2 \cdot (2\,{\rm V})^2 = 1.20\,{\rm V}.\hspace{0.05cm}$$
Durch Multiplikation der ersten Gleichung mit –2 und Addition der beiden Gleichungen erhält man:
$$c_2 \cdot 2\,{\rm V}^2 = 0.1\,{\rm V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_2 \hspace{0.15cm}\underline{= 0.05\,{1/\rm V}}.$$
Der Linearkoeffizient ist somit c1 = 0.5. Der dritte Parametersatz kann genutzt werden, um das Ergebnis zu kontrollieren:
$$c_1 \cdot 3\,{\rm V} + c_2 \cdot (3\,{\rm V})^2 = 0.5 \cdot 3\,{\rm V}+ 0.05 \frac{1}{\rm V}\cdot 9\,{\rm V}^2 = 1.95\,{\rm V}.$$
3.  Die Angabe eines Klirrfaktors bedingt die Verwendung einer harmonischen Schwingung am Eingang. Ist X+(f) = 1V · δ(ff0), so lautet das Spektrum des analytischen Signals am Ausgang:
$$ Y_{+}(f)=\frac{c_2}{2}\cdot A_x^2 \cdot \delta(f) + c_1\cdot A_x \cdot \delta(f- f_0)+\frac{c_2}{2}\cdot A_x^2 \cdot \delta(f- 2 f_0). $$
Die Diracfunktion bei f = 0 folgt aus der trigonometrischen Umformung cos2(α) = 1/2 + 1/2 · cos(α). Mit A1 = c1 · Ax = 0.5 V und A2 = (c2/2) · Ax2 = 0.025 V ergibt sich somit für den Klirrfaktor:
$$K= \frac{A_2}{A_1}= \frac{c_2/2 \cdot A_x}{c_1 }= \frac{0.025}{0.5} \hspace{0.15cm}\underline{= 5 \%}.$$
4.  Entsprechend der Musterlösung zu c) ist K proportional zu Ax. Deshalb erhält man nun K = 15%.
5.  Nun lautet das Ausgangssignal:
$$y(t)= c_1\cdot A_x \cdot \left( 1 - \frac{|\hspace{0.05cm}t\hspace{0.05cm}|}{T_x}\right) +\hspace{0.1cm} {c_2}\cdot A_x^2 \cdot \left( 1 - \frac{|\hspace{0.05cm}t\hspace{0.05cm}|}{T_x}\right)^2.$$
Zum Zeitpunkt t = 0 bzw. t = Tx/2 treten folgende Werte auf:
$$y(t=0) = c_1\cdot A_x + {c_2}\cdot A_x^2 \hspace{0.15cm}\underline{= 1.95\,{\rm V}}\\ y(t=T_x/2) = c_1\cdot A_x \cdot \frac{1}{2} + \hspace{0.1cm}{c_2}\cdot A_x^2 \cdot \frac{1}{4}= 0.75\,{\rm V}+ 0.1125\,{\rm V} \hspace{0.15cm}\underline{ = 0.8625\,{\rm V}}.$$