Difference between revisions of "Aufgaben:Exercise 3.1: Causality Considerations"
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Folgerungen aus dem Zuordnungssatz }} right| :Die Grafik zeigt oben…“) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1755__LZI_A_3_1.png|right|]] | + | [[File:P_ID1755__LZI_A_3_1.png|right|Zwei Vierpolschaltungen]] |
− | + | Die Grafik zeigt oben den Vierpol mit der Übertragungsfunktion | |
− | + | $$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} | |
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | + | wobei $f_{\rm G}$ die 3dB–Grenzfrequenz angibt: | |
− | + | $$f_{\rm G} = \frac{R}{2 \pi \cdot L} | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | Durch Hintereinanderschalten $n$ gleich aufgebauter Vierpole $H_1(f)$ kommt man zu der Übertragungsfunktion | |
− | + | $$H_n(f) = \left [H_1(f)\right ]^n =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^n}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^n} | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | Vorausgesetzt ist hierbei eine geeignete Widerstandsentkopplung, die aber zur Lösung dieser Aufgabe nicht von Bedeutung ist. Die untere Grafik zeigt zum Beispiel die Realisierung der Übertragungsfunktion $H_2(f)$. | |
− | + | In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet. Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion $H(f)$ die [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Hilbert–Transformation]], was durch das folgende Kurzzeichen ausgedrückt wird: | |
− | + | $${\rm Im} \left\{ H(f) \right \} \quad | |
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad | \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad | ||
{\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$ | {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$ | ||
− | + | Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable $x$ ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist. | |
− | : | + | ''Hinweise:'' |
+ | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz|Folgerungen_aus_dem_Zuordnungssatz]]. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
Revision as of 14:06, 7 February 2017
Die Grafik zeigt oben den Vierpol mit der Übertragungsfunktion $$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm},$$
wobei $f_{\rm G}$ die 3dB–Grenzfrequenz angibt: $$f_{\rm G} = \frac{R}{2 \pi \cdot L} \hspace{0.05cm}.$$
Durch Hintereinanderschalten $n$ gleich aufgebauter Vierpole $H_1(f)$ kommt man zu der Übertragungsfunktion $$H_n(f) = \left [H_1(f)\right ]^n =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^n}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^n} \hspace{0.05cm}.$$
Vorausgesetzt ist hierbei eine geeignete Widerstandsentkopplung, die aber zur Lösung dieser Aufgabe nicht von Bedeutung ist. Die untere Grafik zeigt zum Beispiel die Realisierung der Übertragungsfunktion $H_2(f)$.
In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet. Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion $H(f)$ die Hilbert–Transformation, was durch das folgende Kurzzeichen ausgedrückt wird: $${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$
Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable $x$ ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.
Hinweise:
- Die Aufgabe gehört zum Kapitel Folgerungen_aus_dem_Zuordnungssatz.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- 1. Mit der angegebenen Übertragungsfunktion kann man nach dem Spannungsteilerprinzip
- $$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
- berechnen ⇒ Es handelt sich um einen Hochpass. Für sehr niedrige Frequenzen stellt die Induktivität L einen Kurzschluss dar.
- 2. Jedes reale Netzwerk ist kausal. Die Impulsantwort h(t) ist gleich dem Ausgangssignal y(t), wenn zum Zeitpunkt t = 0 am Eingang ein extrem kurzfristiger Impuls – ein sog. Diracimpuls – angelegt wird. Aus Kausalitätsgründen kann dann natürlich am Ausgang nicht schon für Zeiten t < 0 ein Signal auftreten:
- $$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
- Formal lässt sich dies folgendermaßen zeigen: Die Hochpass–Übertragungsfunktion H1(f) kann wie folgt umgeformt werden:
- $$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm}.$$
- Die zweite Übertragungsfunktion beschreibt die zu H1(f) äquivalente Tiefpassfunktion, die im Zeitbereich zur Exponentialfunktion führt. Die „1” wird zu einer Diracfunktion. Mit T = 2π · fG gilt somit für t ≥ 0:
- $$h_1(t) = \delta(t) - \frac{1}{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
- Für t < 0 gilt dagegen h1(t) = 0, womit die Kausalität nachgewiesen wäre ⇒ Antwort Ja.
- 3. Die Hintereinanderschaltung zweier Hochpässe führt zu folgender Übertragungsfunktion:
- $$H_2(f) = \left [H_1(f)\right ]^2 =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^2}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^2} =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^2 \cdot \left [(1-{\rm j}\cdot f/f_{\rm G})\right ]^2} {\left [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\right ]^2}= \\ = \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2 \cdot (f/f_{\rm G})^3)} {\left [1+(f/f_{\rm G})^2 \right ]^2}\hspace{0.05cm}.$$
- Mit f = fG folgt daraus:
- $$H_2(f = f_{\rm G}) = \frac{1 - 1 +{\rm j}\cdot 2} {4}= \frac{\rm j} {2}$$
- $$\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \} = 0, \hspace{0.4cm} {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$
- 4. Richtig sind hier die beiden ersten Lösungsvorschläge. Da h1(t) = 0 für t < 0 ist, erfüllt auch die Faltungsoperation h2(t) = h1(t) ∗ h1(t) die Kausalitätsbedingung. Ebenso ergibt die n–fache Faltung eine kausale Impulsantwort:
- $$h_n(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
- Bei kausaler Impulsantwort h2(t) hängen aber der Real– und der Imaginärteil der Spektralfunktion H2(f) über die Hilbert–Transformation zusammen. Mit der Abkürzung x = f/fG und dem Ergebnis aus der Teilaufgabe 3) gilt somit:
- $$\frac{x^4- x^2}{x^4+2 x^2+1} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{2x^3}{x^4+2 x^2+1}\hspace{0.05cm}.$$