Difference between revisions of "Aufgaben:Exercise 1.5Z: Probabilities of Default"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Statistische Abhängigkeit und Unabhängigkeit}}
 
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Statistische Abhängigkeit und Unabhängigkeit}}
  
[[File:P_ID87__Sto_Z_1_5.png|right|]]
+
[[File:P_ID87__Sto_Z_1_5.png|right|Funktionsschaltbild des Gerätes]]
  
  
Ein Geräteteil ist aus den Bauteilen $B1, B2,…, Bn$ aufgebaut, wobei die jeweilige Funktionsfähigkeit unabhängig von allen anderen angenommen werden kann. Das Teil $T_1$ funktioniert nur dann, wenn alle $n$ Bauteile funktionsfähig sind. Gehen Sie davon aus, dass alle Bauteile mit gleicher Wahrscheinlichkeit $p_A$ ausfallen.
+
Ein Geräteteil ist aus den Bauteilen $B_1, B_2, … , B_n$ aufgebaut, wobei die jeweilige Funktionsfähigkeit unabhängig von allen anderen Bauteilen angenommen werden kann.  
 +
*Das Teil $T_1$ funktioniert nur dann, wenn alle $n$ Bauteile funktionsfähig sind.  
 +
*Gehen Sie davon aus, dass alle Bauteile mit gleicher Wahrscheinlichkeit $p_{\rm A}$ ausfallen.
 +
 
  
 
Zur Erhöhung der Zuverlässigkeit werden wichtige Baugruppen häufig dupliziert. Das Gerät $G$ kann somit mengentheoretisch wie folgt beschrieben werden:
 
Zur Erhöhung der Zuverlässigkeit werden wichtige Baugruppen häufig dupliziert. Das Gerät $G$ kann somit mengentheoretisch wie folgt beschrieben werden:
$$ G = T_1 \cup T_2 $$
+
$$ G = T_1 \cup T_2.$$
  
 
Das heißt: Das Gerät $G$ ist bereits dann einsatzbereit, wenn zumindest eines der beiden baugleichen Teilgeräte ($T_1$ oder $T_2$) funktionsfähig ist.
 
Das heißt: Das Gerät $G$ ist bereits dann einsatzbereit, wenn zumindest eines der beiden baugleichen Teilgeräte ($T_1$ oder $T_2$) funktionsfähig ist.
  
  
'''Hinweis''': Diese Aufgabe bezieht sich auf den Lehrstoff von Kapitel 1.3. Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
+
''Hinweise:''  
 +
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]].
 +
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 +
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
 +
:[[Statistische Abhängigkeit und Unabhängigkeit]]
 +
 
  
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Die Ausfallwahrscheinlichkeit $p_G$ des Gesamtgeräts darf nicht größer sein als 0.04%. Wie groß dürfen dann die Ausfallwahrscheinlichkeiten $p_T$ der zwei parallel vorhandenen Geräteteile höchstens sein?
+
{Die Ausfallwahrscheinlichkeit $p_{\rm G}$ des Gesamtgeräts darf nicht größer sein als 0.04%. Wie groß dürfen dann die Ausfallwahrscheinlichkeiten $p_{\rm T}$ der zwei parallel vorhandenen identischen Geräteteile höchstens sein?
 
|type="{}"}
 
|type="{}"}
$p_\text{T,max}$ = { 0.02 3% }
+
$p_\text{T, max} \ = $ { 0.02 3% }
  
{Die Ausfallwahrscheinlichkeit aller Bauteile sei $p_A = 0.1$. Jedes Teilgerät bestehe aus $n = 3$ Bauteilen. Berechnen Sie die Wahrscheinlichkeit $p_T$ exakt, dass ein Teilgerät ausfällt.
+
{Die Ausfallwahrscheinlichkeit aller Bauteile sei $p_{\rm A} = 0.1$. Jedes Teilgerät bestehe aus $n = 3$ Bauteilen. Berechnen Sie die Wahrscheinlichkeit $p_{\rm T}$ exakt, dass ein Teilgerät ausfällt.
 
|type="{}"}
 
|type="{}"}
$p_T$ = { 0.271 3% }
+
$\text{exakt:  }p_{\rm T} \ = $ { 0.271 3% }
  
{Welcher Wert ergibt sich für $p_A = 0.01$? In welcher Form kann man $p_T$ für kleine Werte von $p_A$ annähern?
+
{Welcher Wert ergibt sich für $p_{\rm A} = 0.01$? In welcher Form kann man $p_{\rm T}$ für kleine Werte von $p_{\rm A}$ annähern?
 
|type="{}"}
 
|type="{}"}
$p_T$ = { 0.0297 3% }
+
$\text{Näherung:  }p_{\rm T} \ = $ { 0.0297 3% }
  
{Nun gelte für die Ausfallwahrscheinlichkeit aller Bauteile $p_A = 0.4%$. Wieviele Bauteile kann das Teilgerät höchstens enthalten, wenn $p_T ≤ 2%$ gelten soll?
+
{Nun gelte für die Ausfallwahrscheinlichkeit aller Bauteile $p_{\rm A} = 0.4\%$. Wieviele Bauteile kann das Teilgerät höchstens enthalten, wenn $p_{\rm T} ≤ 2\%$ gelten soll?
 
|type="{}"}
 
|type="{}"}
$n$ = { 5 3% }
+
$n \ = $ { 5 3% }
  
  

Revision as of 16:12, 22 February 2017

Funktionsschaltbild des Gerätes


Ein Geräteteil ist aus den Bauteilen $B_1, B_2, … , B_n$ aufgebaut, wobei die jeweilige Funktionsfähigkeit unabhängig von allen anderen Bauteilen angenommen werden kann.

  • Das Teil $T_1$ funktioniert nur dann, wenn alle $n$ Bauteile funktionsfähig sind.
  • Gehen Sie davon aus, dass alle Bauteile mit gleicher Wahrscheinlichkeit $p_{\rm A}$ ausfallen.


Zur Erhöhung der Zuverlässigkeit werden wichtige Baugruppen häufig dupliziert. Das Gerät $G$ kann somit mengentheoretisch wie folgt beschrieben werden: $$ G = T_1 \cup T_2.$$

Das heißt: Das Gerät $G$ ist bereits dann einsatzbereit, wenn zumindest eines der beiden baugleichen Teilgeräte ($T_1$ oder $T_2$) funktionsfähig ist.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Statistische Abhängigkeit und Unabhängigkeit.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
Statistische Abhängigkeit und Unabhängigkeit


Fragebogen

1

Die Ausfallwahrscheinlichkeit $p_{\rm G}$ des Gesamtgeräts darf nicht größer sein als 0.04%. Wie groß dürfen dann die Ausfallwahrscheinlichkeiten $p_{\rm T}$ der zwei parallel vorhandenen identischen Geräteteile höchstens sein?

$p_\text{T, max} \ = $

2

Die Ausfallwahrscheinlichkeit aller Bauteile sei $p_{\rm A} = 0.1$. Jedes Teilgerät bestehe aus $n = 3$ Bauteilen. Berechnen Sie die Wahrscheinlichkeit $p_{\rm T}$ exakt, dass ein Teilgerät ausfällt.

$\text{exakt: }p_{\rm T} \ = $

3

Welcher Wert ergibt sich für $p_{\rm A} = 0.01$? In welcher Form kann man $p_{\rm T}$ für kleine Werte von $p_{\rm A}$ annähern?

$\text{Näherung: }p_{\rm T} \ = $

4

Nun gelte für die Ausfallwahrscheinlichkeit aller Bauteile $p_{\rm A} = 0.4\%$. Wieviele Bauteile kann das Teilgerät höchstens enthalten, wenn $p_{\rm T} ≤ 2\%$ gelten soll?

$n \ = $


Musterlösung

1.  Da die beiden Teilgeräte unabhängig voneinander ausfallen, gilt mengentheoretisch:
$$\rm Pr(\it G \rm \hspace{0.1cm}f\ddot{a}llt\hspace{0.1cm}aus) = Pr(\it T_{\rm 1}\rm \hspace{0.1cm} f\ddot{a}llt \hspace{0.1cm}aus) \cdot Pr(\it T_{\rm 2}\rm \hspace{0.1cm} f\ddot{a}llt \hspace{0.1cm}aus). $$
Da die Teilgeräte T1 und T2 baugleich sind, fallen sie mit der gleichen Wahrscheinlichkeit pT aus. Daraus folgt:
$$\rm \it p_{\rm G} = \it p_{\rm T}^{\rm 2} \hspace{0.5cm} \rm bzw. \hspace{0.5cm} \rm \it p_{\rm T}= \sqrt{\it p_{\rm G}} \le \rm\sqrt{0.0004} \hspace{0.15cm}\underline {= 0.02}.$$
2.  Dieses Ergebnis ist einfacher über das Komplementärereignis zu bestimmen:
$$\rm Pr(\it T_{\rm 1}\hspace{0.1cm}\rm funktioniert) = \rm Pr(\it B_{\rm 1} \hspace{0.1cm}\rm funktioniert \cap \it B_{\rm 2} \hspace{0.1cm} \rm funktioniert \cap \it B_{\rm 3}\hspace{0.1cm} \rm funktioniert).$$
$$\Rightarrow 1- p_{\rm T}= (1-p_{\rm A})^{3} \hspace{0.3cm}\rm \Rightarrow \hspace{0.3cm} 1-p_{\rm T}=(0.9)^3= 0.729 \hspace{0.3cm}\rm \Rightarrow \hspace{0.3cm} p_{\rm T}\hspace{0.15cm}\underline {= 0.271 = 27.1\%}.$$
3.  Mit pA = 0.01 erhält man pT = 0.0297. Allgemein gilt die Näherung: pTn · pA (= 3%).
4.  Mit der Näherung aus (c) folgt direkt n = 5. Bei größerem pA müsste man wie folgt vorgehen:
$$0.996^{\it n}\ge 0.98 \hspace{0.5cm} \rm\Longrightarrow \hspace{0.5cm} \it n\le\rm\frac{log(0.98)}{log(0.996)} = 5.0406\hspace{0.15cm}\underline { \approx 5}.$$