Difference between revisions of "Aufgaben:Exercise 1.7Z: BARBARA Generator"
From LNTwww
m (Nabil verschob die Seite Zusatzaufgaben:1.7 BARBARA-Generator nach 1.7Z BARBARA-Generator) |
|||
Line 2: | Line 2: | ||
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}} | {{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}} | ||
− | [[File:P_ID454__Sto_Z_1_7.png|right|]] | + | [[File:P_ID454__Sto_Z_1_7.png|right|BARBARA-Generator]] |
Betrachtet wird hier ein ternärer Zufallsgenerator mit den Symbolen $A$, $B$ und $R$, der durch eine homogene und stationäre Markovkette erster Ordnung beschrieben werden kann. | Betrachtet wird hier ein ternärer Zufallsgenerator mit den Symbolen $A$, $B$ und $R$, der durch eine homogene und stationäre Markovkette erster Ordnung beschrieben werden kann. | ||
− | Die Übergangswahrscheinlichkeiten können dem skizzierten Markovdiagramm entnommen werden. Für die Teilaufgaben | + | Die Übergangswahrscheinlichkeiten können dem skizzierten Markovdiagramm entnommen werden. Für die ersten drei Teilaufgaben soll stets $p = 1/4$ gelten. |
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Markovketten|Markovketten]]. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | |||
===Fragebogen=== | ===Fragebogen=== | ||
Line 16: | Line 18: | ||
|type="[]"} | |type="[]"} | ||
- Die Werte von $p > 0$ und $q < 1$ sind weitgehend frei wählbar. | - Die Werte von $p > 0$ und $q < 1$ sind weitgehend frei wählbar. | ||
− | + Für die Übergangswahrscheinlichkeiten muss gelten: $p + q = 1$. | + | + Für die Übergangswahrscheinlichkeiten muss gelten: $p + q = 1$. |
+ Alle Symbole haben gleiche ergodische Wahrscheinlichkeiten. | + Alle Symbole haben gleiche ergodische Wahrscheinlichkeiten. | ||
− | - Es gilt hier: $Pr(A) = 1/2, Pr(B) = 1/3, Pr(R) = 1/6$. | + | - Es gilt hier: ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$. |
− | {Wie groß sind die bedingten Wahrscheinlichkeiten $ | + | {Wie groß sind die bedingten Wahrscheinlichkeiten $p_{\rm A}$, $p_{\rm B}$ und $p_{\rm C}$, dass im Zeitbereich zwischen $ν+1$ und $ν+7$ $\rm die Sequenz $BARBARA$ ausgegeben wird, wenn man sich zum Zeitpunkt $ν$ im Zustand $A$, $B$ bzw. $R$ befindet? Es gelte $p = 1/4$. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $p_{\rm A} \ =$ { 0.549 3% } $\ \cdot 10^{-3}$ |
− | $ | + | $p_{\rm B} \ =$ { 0. } $\ \cdot 10^{-3}$ |
− | $ | + | $p_{\rm C} \ =$ { 0.183 3% } $\ \cdot 10^{-3}$ |
− | {Wie groß ist die Wahrscheinlichkeit insgesamt, dass der Generator zu sieben aufeinanderfolgenden Zeitpunkten BARBARA ausgibt $(p = 1/4)$? | + | {Wie groß ist die Wahrscheinlichkeit insgesamt, dass der Generator zu sieben aufeinanderfolgenden Zeitpunkten die Sequenz $BARBARA$ ausgibt. Es gelte weiter $(p = 1/4)$? |
|type="{}"} | |type="{}"} | ||
− | $Pr(BARBARA)$ | + | $p = 1/4\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)\ =$ { 0.244 3% } $\ \cdot 10^{-3}$ |
− | {Wie ist der Parameter $ | + | {Wie ist der Parameter $p_{\rm opt}$ zu wählen, damit $Pr(BARBARA)$ möglichst groß wird? Welche Wahrscheinlichkeit ergibt sich damit für BARBARA? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $p_{\rm opt} \ =$ { 0.8333 3% } |
− | $Pr(BARBARA)$ = { | + | $p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)$ = { 22 3% } $\ \cdot 10^{-3}$ |
</quiz> | </quiz> |
Revision as of 17:32, 23 February 2017
Betrachtet wird hier ein ternärer Zufallsgenerator mit den Symbolen $A$, $B$ und $R$, der durch eine homogene und stationäre Markovkette erster Ordnung beschrieben werden kann.
Die Übergangswahrscheinlichkeiten können dem skizzierten Markovdiagramm entnommen werden. Für die ersten drei Teilaufgaben soll stets $p = 1/4$ gelten.
Hinweise:
- Die Aufgabe gehört zum Kapitel Markovketten.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- 1. Die Summe aller abgehenden Pfeile muss immer 1 sein. Deshalb gilt q = 1 - p. Aufgrund der Symmetrie des Markovdiagramms sind die ergodischen Wahrscheinlichkeiten alle gleich:
- $${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$
- Richtig sind somit der zweite und der dritte Lösungsvorschlag.
- 2. Wenn man zum Zeitpunkt ν im Zustand B ist, ist für den Zeitpunkt ν + 1 wegen Pr(B|B) = 0 der Zustand B nicht möglich. Man scheitert hier bereits beim Anfangsbuchstaben „B”: pB = 0
- Für die Berechnung von pA ist zu beachten: Ausgehend von A geht man im Markovdiagramm zunächst zu B (mit der Wahrscheinlichkeit q), dann fünfmal im Uhrzeigersinn (jeweils mit der Wahrscheinlichkeit p) und schließlich noch von R nach A (mit der Wahrscheinlichkeit q). Das bedeutet:0.
- $$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 5.49 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-4}}.$$
- In ähnlicher Weise erhält man:
- $$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 1.83 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-4}}.$$
- 3. Durch Mittelung über die bedingten Wahrscheinlichkeiten erhält man:
- $${\rm Pr}(BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$
- Dies führt zu dem Ergebnis:
- $${\rm Pr}(BARBARA) \hspace{-0.15cm} = \hspace{-0.15cm} \frac {1}{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right) = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot (p+q) = \\ = \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \hspace{0.15cm}\underline { \approx 2.44 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-4}}.$$
- 4. Die im Punkt c) berechnete Wahrscheinlichkeit lautet p5 · (1 - p)/3, wobei q = 1 – p berücksichtigt ist. Durch Nullsetzen des Differentials erhält man die Bestimmungsgleichung:
- $$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
- Damit ergibt sich ein gegenüber c) etwa um den Faktor 90 größerer Wert: Pr(BARBARA) ≈ 0.022.