Difference between revisions of "Aufgaben:Exercise 3.7Z: Error Performance"

From LNTwww
Line 59: Line 59:
  
  
'''(2)'''  Der Mittelwert ergibt sich zu $m_f = N \cdot p \hspace{0.15cm}\underline{= 64=$ unabhängig davon, ob man von der Binomial- oder der Poissonverteilung ausgeht.
+
'''(2)'''  Der Mittelwert ergibt sich zu $m_f = N \cdot p \hspace{0.15cm}\underline{= 64}$ unabhängig davon, ob man von der Binomial- oder der Poissonverteilung ausgeht.
  
'''(3)'''  Für die Streuung erhält man:
 
$$\it \sigma_f=\rm\sqrt{\rm 64000\cdot 10^{-3}\cdot 0.999}\hspace{0.15cm}\underline{\approx\sqrt{64}=8}.$$
 
  
Der Fehler durch Anwendung der Poisson– anstelle der Binomialverteilung ist kleiner als 0.0005.
+
'''(3)'''  Für die Streuung erhält man   $\it \sigma_f=\rm\sqrt{\rm 64000\cdot 10^{-3}\cdot 0.999}\hspace{0.15cm}\underline{\approx\sqrt{64}=8}.$ Der Fehler durch Anwendung der Poissonlverteilung anstelle der Binomialverteilung ist hier kleiner als $0.0005$.
  
'''(4)'''&nbsp; Bei einer Gau&szlig;schen Zufallsgr&ouml;&szlig;e <i>f</i> mit Mittelwert 64 ist die Wahrscheinlichkeit Pr(<i>f</i> &#8804; 64) <u>etwa 50%</u>. <i>Anmerkung:</i> Bei einer kontinuierlichen Zufallsgr&ouml;&szlig;e w&auml;re die Wahrscheinlichkeit exakt 0.5. Da <i>f</i> nur ganzzahlige Werte annehmen kann, ist sie hier geringf&uuml;gig gr&ouml;&szlig;er.
 
  
'''(5)'''&nbsp; Mit <i>&lambda;</i> = <i>N</i> &middot; <i>p</i> lautet die entsprechende Bedingung:
+
'''(4)'''&nbsp; Bei einer Gau&szlig;schen Zufallsgr&ouml;&szlig;e $f$ mit Mittelwert $m_f  {= 64}$ ist die Wahrscheinlichkeit ${\rm Pr}(f \le  64) \hspace{0.15cm}\underline{\approx 50\%}$. <i>Anmerkung:</i> Bei einer kontinuierlichen Zufallsgr&ouml;&szlig;e w&auml;re die Wahrscheinlichkeit exakt $0.5$. Da $f$ nur ganzzahlige Werte annehmen kann, ist sie hier geringf&uuml;gig gr&ouml;&szlig;er.
 +
 
 +
 
 +
'''(5)'''&nbsp; Mit $\lambda = N \cdot p$ lautet die entsprechende Bedingung:
 
$$\rm Q\big (\frac{\rm 64-\it \lambda}{\sqrt{\it \lambda}} \big )\le \rm  0.002\hspace{0.5cm}\rm bzw.\hspace{0.5cm}\frac{\rm 64-\it \lambda}{\sqrt{\it \lambda}}>\rm 2.9.$$
 
$$\rm Q\big (\frac{\rm 64-\it \lambda}{\sqrt{\it \lambda}} \big )\le \rm  0.002\hspace{0.5cm}\rm bzw.\hspace{0.5cm}\frac{\rm 64-\it \lambda}{\sqrt{\it \lambda}}>\rm 2.9.$$
  
Der Maximalwert von <i>&lambda;</i> kann nach folgender Gleichung ermittelt werden:
+
Der Maximalwert von $\lambda$ kann nach folgender Gleichung ermittelt werden:
$$\it \lambda+\rm 2.9\cdot\sqrt{\it\lambda}-\rm 64 = \rm 0.$$
+
$$ \lambda+\rm 2.9\cdot\sqrt{\it\lambda}-\rm 64 = \rm 0.$$
  
 
Die L&ouml;sung dieser quadratischen Gleichung lautet:
 
Die L&ouml;sung dieser quadratischen Gleichung lautet:
$$\sqrt{\it \lambda}=\frac{\rm -2.9\pm\rm\sqrt{\rm 8.41+256}}{\rm 2}=\rm 6.68.$$
+
$$\sqrt{\it \lambda}=\frac{\rm -2.9\pm\rm\sqrt{\rm 8.41+256}}{\rm 2}=\rm 6.68  
 +
\hspace{0.5cm}\Rightarrow \hspace{0.5cm}
 +
\lambda = 44.6 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
 +
p_\text{B, max}= \frac{44.6}{64000} \hspace{0.15cm}\underline{\approx 0.069\%}.$$
  
Daraus folgt direkt <i>&lambda;</i> = 44.6 und <i>p</i><sub>max</sub> <u>= 0.69 &middot; 10 <sup>&ndash;3</sup></u>. Die zweite Lösung obiger Gleichung ist negativ und muss nicht weiter berücksichtigt werden.
+
Die zweite Lösung obiger Gleichung ist negativ und muss nicht weiter berücksichtigt werden.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 17:41, 13 March 2017

Auszug aus der CCITT-Empfehlung G.821: Error Performance

Jeder Betreiber von ISDN-Systemen muss gewisse Mindestanforderungen hinsichtlich der Bitfehlerquote (BER) einhalten, die zum Beispiel in der CCITT-Empfehlung G.821 unter dem Namen Error Performance spezifiziert sind.

Rechts sehen Sie einen Auszug aus dieser Empfehlung:

  • Diese besagt unter Anderem, dass – über eine ausreichend lange Zeit gemittelt – mindestens 99.8% aller Einsekunden-Intervalle eine Bitfehlerquote kleiner $10^{-3}$ (ein Promille) aufweisen müssen.
  • Bei einer Bitrate von 64 kbit/s entspricht dies der Bedingung, dass in einer Sekunde (und somit bei $N = 64\hspace{0.05cm}000$ übertragenen Symbolen) nicht mehr als 64 Bitfehler auftreten dürfen:
$$\rm Pr(\it f \le \rm 64) \ge \rm 0.998.$$


Hinweise:

  • Die Aufgabe gehört zum Kapitel Gaußverteilte Zufallsgröße.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Gehen Sie für die ersten drei Teilaufgaben stets von der Bitfehlerwahrscheinlichkeit $p = 10^{-3}$ aus. In der gesamten Aufgabe gelte zudem $N = 64\hspace{0.05cm}000$.
  • In der Aufgabe 3.7 wurde darauf hingewiesen, dass unter gewissen Bedingungen – die hier alle erfüllt sind – die Binomialverteilung durch eine Gaußverteilung mit gleichem Mittelwert und gleicher Streuung approximiert werden kann. Verwenden Sie diese Näherung bei der Teilaufgabe (4).


Fragebogen

1

Welche der folgenden Aussagen treffen hinsichtlich der Zufallsgröße $f$ zu?

Die Zufallsgröße $f$ ist binomialverteilt.
$f$ kann durch eine Poissonverteilung angenähert werden.

2

Welcher Wert ergibt sich für den Mittelwert der Zufallsgröße $f$?

$m_f \ = $

3

Wie groß ist die Streuung? Verwenden Sie geeignete Näherungen.

$\sigma_f \ = $

4

Berechnen Sie Wahrscheinlichkeit, dass nicht mehr als $64$ Bitfehler auftreten. Verwenden Sie hierzu die Gaußnäherung.

${\rm Pr}(f ≤ 64) \ = $

$ \ \rm \%$

5

Wie groß darf die Bitfehlerwahrscheinlichkeit $p_\text{B, max}$ höchstens sein, damit die Bedingung „Nur in höchstens 0.2% der Einsekunden-Intervalle 64 (oder mehr) Bitfehler” eingehalten werden kann? Es gilt ${\rm Q}(2.9) \approx 0.002$.

$p_\text{B, max}\ = $

$ \ \rm \%$


Musterlösung

(1)  Beide Aussagen sind richtig:

  • Bei der hier definierten Zufallsgröße $f$ handelt es sich um den klassischen Fall einer binomialverteilten Zufallsgröße, nämlich der Summe über $N$ Binärwerte ($0$ oder $1$).
  • Da das Produkt $N \cdot p = 64$ und dadurch sehr viel größer als $1$ ist, kann die Binomialverteilung mit guter Näherung durch eine Poissonverteilung mit der Rate ${\it \lambda} = 64$ angenähert werden.


(2)  Der Mittelwert ergibt sich zu $m_f = N \cdot p \hspace{0.15cm}\underline{= 64}$ unabhängig davon, ob man von der Binomial- oder der Poissonverteilung ausgeht.


(3)  Für die Streuung erhält man   $\it \sigma_f=\rm\sqrt{\rm 64000\cdot 10^{-3}\cdot 0.999}\hspace{0.15cm}\underline{\approx\sqrt{64}=8}.$ Der Fehler durch Anwendung der Poissonlverteilung anstelle der Binomialverteilung ist hier kleiner als $0.0005$.


(4)  Bei einer Gaußschen Zufallsgröße $f$ mit Mittelwert $m_f {= 64}$ ist die Wahrscheinlichkeit ${\rm Pr}(f \le 64) \hspace{0.15cm}\underline{\approx 50\%}$. Anmerkung: Bei einer kontinuierlichen Zufallsgröße wäre die Wahrscheinlichkeit exakt $0.5$. Da $f$ nur ganzzahlige Werte annehmen kann, ist sie hier geringfügig größer.


(5)  Mit $\lambda = N \cdot p$ lautet die entsprechende Bedingung: $$\rm Q\big (\frac{\rm 64-\it \lambda}{\sqrt{\it \lambda}} \big )\le \rm 0.002\hspace{0.5cm}\rm bzw.\hspace{0.5cm}\frac{\rm 64-\it \lambda}{\sqrt{\it \lambda}}>\rm 2.9.$$

Der Maximalwert von $\lambda$ kann nach folgender Gleichung ermittelt werden: $$ \lambda+\rm 2.9\cdot\sqrt{\it\lambda}-\rm 64 = \rm 0.$$

Die Lösung dieser quadratischen Gleichung lautet: $$\sqrt{\it \lambda}=\frac{\rm -2.9\pm\rm\sqrt{\rm 8.41+256}}{\rm 2}=\rm 6.68 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \lambda = 44.6 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} p_\text{B, max}= \frac{44.6}{64000} \hspace{0.15cm}\underline{\approx 0.069\%}.$$

Die zweite Lösung obiger Gleichung ist negativ und muss nicht weiter berücksichtigt werden.