Difference between revisions of "Aufgaben:Exercise 3.9Z: Sine Transformation"
From LNTwww
Line 21: | Line 21: | ||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen|Exponentialverteilte Zufallsgröße]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen|Exponentialverteilte Zufallsgröße]]. | ||
− | *Bezug genommen wird | + | *Besonderer Bezug genommen wird auf die Seite [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Transformation_von_Zufallsgr.C3.B6.C3.9Fen|Transformation von Zufallsgrößen]] und auf das Kapitel [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente|Erwartungswerte und Momente]]. |
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
*Vorgegeben sind die beiden unbestimmten Integrale: | *Vorgegeben sind die beiden unbestimmten Integrale: | ||
Line 31: | Line 31: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Welche der | + | {Welche der folgenden Aussagen sind zutreffend? |
|type="[]"} | |type="[]"} | ||
− | - | + | - $y$ ist auf den Wertbereich $0 \le y \le 1$ begrenzt. |
− | + | + | + $y$ ist auf den Wertbereich $0 < y \le 1$ begrenzt. |
− | + Der Mittelwert | + | + Der Mittelwert $m_y$ ist kleiner als der Mittelwert $m_x$. |
− | {Berechnen Sie den Mittelwert der Zufallsgröße | + | {Berechnen Sie den Mittelwert der Zufallsgröße $y$. |
|type="{}"} | |type="{}"} | ||
− | $m_y$ | + | $m_y \ =$ { 0.849 3% } |
− | {Berechnen Sie den quadratischen Mittelwert von | + | {Berechnen Sie den quadratischen Mittelwert von $y$ und die Streuung. |
|type="{}"} | |type="{}"} | ||
− | $\sigma_y$ | + | $\sigma_y \ =$ { 0.172 3% } |
− | {Berechnen Sie die WDF | + | {Berechnen Sie die WDF $f_y(y)$. <i>Hinweis</i>: Beachten Sie die Symmetrieeigenschaften. Welcher WDF–Wert ergibt sich für $y = 0.6$? |
|type="{}"} | |type="{}"} | ||
− | $f_y(y=0.6)$ | + | $f_y(y=0.6) \ =$ { 0.573 3% } |
− | {Welcher WDF-Wert ergibt sich für | + | {Welcher WDF-Wert ergibt sich für $y = 1$? Interpretieren Sie das Ergebnis. Wie groß ist die Wahrscheinlichkeit, dass $y$ exakt gleich $1$ ist? |
|type="{}"} | |type="{}"} | ||
− | $Pr(y=1)$ | + | ${\rm Pr}(y=1) \ =$ { 0. } |
Revision as of 17:27, 14 March 2017
Wir betrachten in dieser Aufgabe eine Zufallsgröße $x$ mit $\sin^2$–förmiger WDF im Bereich zwischen $x= 0$ und $x= 2$ (außerhalb ist die WDF identisch $0$): $$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm f\ddot{u}r\hspace{0.15cm}{\rm 0\le \it x \le \rm 2} .$$
Der Mittelwert und die Streuung dieser Zufallsgröße $x$ wurden bereits in der Aufgabe 3.3 ermittelt: $$m_x = 1,\hspace{0.2cm}\sigma_x = 0.361.$$
Eine weitere Zufallsgröße $y$ erhält man durch Transformation mittels der nichtlinearen Kennlinie $$y= g(x) =\sin({\rm\pi}{\rm 2}\cdot x).$$
Die Abbildung zeigt jeweils im Bereich $0 \le x \le 2$:
- oben die WDF fx(x),
- unten die nichtlineare Kennlinie $y = g(x)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Exponentialverteilte Zufallsgröße.
- Besonderer Bezug genommen wird auf die Seite Transformation von Zufallsgrößen und auf das Kapitel Erwartungswerte und Momente.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Vorgegeben sind die beiden unbestimmten Integrale:
- $$\int \sin^{\rm 3}( ax)\,{\rm d}x = \frac{\rm 1}{ 3 a} \cdot \cos^{\rm 3}( ax)-\frac{\rm 1}{ a}\cdot \cos(ax),$$
- $$\int \sin^{\rm 4}(ax)\,{\rm d}x =\frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 4 a} \cdot \sin(2 ax)+\frac{\rm 1}{32 a}\cdot \sin(4 ax).$$
Fragebogen
Musterlösung
- 1. Aufgrund des Wertebereichs von x und der gegebenen Kennlinie kann y keine Werte kleiner als 0 bzw. größer als 1 annehmen. Der Wert y = 0 kann ebenfalls nicht auftreten, da weder x = 0 noch x = 2 möglich sind. Mit diesen Eigenschaften ergibt sich sicher my < 1, also ein kleinerer Wert als für mx. Richtig sind also der zweite und der dritte Lösungsvorschlag.
- 2. Zur Lösung dieser Aufgabe könnte man beispielsweise zunächst die WDF fy(y) bestimmen und daraus in gewohnter Weise my berechnen. Zum gleichen Ergebnis führt der direkte Weg:
- $$\it m_y=E[y]=E[g(x)]=\int_{-\infty}^{+\infty}g(x)\cdot f_x(x)\,{\rm d}x.$$
- Mit den aktuellen Funktionen g(x) und fx(x) erhält man:
- $$\it m_y=\int_{\rm 0}^{\rm 2}\hspace{-0.1cm}\rm sin^{\rm 3}(\frac{\rm\pi}{\rm 2}\cdot \it x)\,{\rm d}x=\frac{\rm 2}{\rm 3\cdot \pi}\cdot \rm cos^{\rm 3}(\frac{\rm \pi}{\rm 2}\cdot \it x)-\frac{\rm 2}{\rm \pi}\rm \cdot cos(\frac{3 \cdot \rm \pi}{\rm 2}\cdot \it x)\Big|_{\rm 0}^{\rm 2}=\frac{\rm 8}{\rm 3\cdot \pi} \hspace{0.15cm}\underline{=\rm 0.849}.$$
- 3. In Analogie zu Punkt 2. gilt:
- $$\it m_{\rm 2\it y}=\it E[y^{\rm 2}]=\it E[g^{\rm 2}(\it x)]=\int_{-\infty}^{+\infty}\hspace{-0.35cm}g^{\rm 2}(\it x)\cdot\it f_x(x)\,{\rm d}x.$$
- Dies führt zum Ergebnis:
- $$\it m_{\rm 2\it y}=\int_{\rm 0}^{\rm 2}\hspace{-0.15cm}\rm sin^{\rm 4}(\frac{\rm \pi}{\rm 2}\cdot\it x)\,{\rm d} x= \frac{\rm 3}{\rm 8}\cdot\it x-\frac{\rm 1}{\rm 2\cdot\pi}\cdot \rm sin(\rm \pi\cdot\it x)+\frac{\rm 1}{\rm 16\cdot\pi}\cdot \rm sin(\rm 2\cdot \pi\cdot\it x)\Big|_{\rm 0}^{\rm 2} \hspace{0.15cm}{= \rm 0.75}.$$
- Mit dem Ergebnis aus 2. folgt somit für die Streuung:
- $$\it \sigma_{y}=\sqrt{\frac{\rm 3}{\rm 4}-\Big(\frac{\rm 8}{\rm 3\cdot\pi}\Big)^{\rm 2}} \hspace{0.15cm}\underline{\approx \rm 0.172}.$$
- 4. Aufgrund der Symmetrie von WDF fx(x) und Kennlinie y = g(x) um x = 1 liefern die beiden Bereiche „0 ≤ x ≤ 1” und „1 ≤ x ≤ 2” jeweils den gleichen Beitrag für fy(y). Im ersten Bereich ist die Ableitung der Kennlinie positiv,
- $$\it g'(x)={\rm \pi}/{\rm 2}\cdot \rm cos({\rm \pi}/{\rm 2}\cdot\it x),$$
- und die Umkehrfunktion lautet:
- $$\it x=h(y)={\rm 2}/{\rm \pi}\cdot \rm arcsin(\it y).$$
- Unter Berücksichtigung des zweiten Beitrags durch den Faktor 2 erhält man für die gesuchte WDF im Bereich „0 ≤ y ≤ 1” (außerhalb ist fy(y) = 0):
- $$f_y(y)=\rm 2\cdot\frac{sin^{\rm 2}({\rm \pi}/{\rm 2}\cdot\it x)}{{\rm \pi}/{\rm 2}\cdot cos({\rm \pi}/{\rm 2}\cdot\it x)}\Big|_{\, \it x={\rm 2}/{\rm \pi}\cdot \rm arcsin(\it y)}.$$
- Dies führt zum Zwischenergebnis:
- $$f_y(y)=\frac{\rm 4}{\rm \pi}\cdot \frac{\rm sin^{\rm 2}(\rm arcsin(\it y))}{\sqrt{\rm 1-sin^{\rm 2}(\rm arcsin(\it y))}}.$$
- Wegen sin(arcsin(y)) = y erhält man schließlich:
- $$f_y(y)=\frac{\rm 4}{\rm \pi}\cdot \frac{\it y^{\rm 2}}{\sqrt{\rm 1-\it y^{\rm 2}}}.$$
- An der Stelle y = 0.6 erhält man den Wert 0.573. Rechts ist die WDF fy(y) grafisch dargestellt.
- 5. Die WDF ist an der Stelle y = 1 unendlich groß. Dies hängt damit zusammen, dass an dieser Stelle die Ableitung g'(x) der Kennlinie horizontal verläuft. Da aber y eine kontinuierliche Zufallsgröße ist, gilt trotzdem Pr(y = 1) = 0. Das bedeutet: Eine Unendlichkeitsstelle in der WDF ist nicht identisch mit einer Diracfunktion.