Difference between revisions of "Aufgaben:Exercise 4.6: Coordinate Rotation"
From LNTwww
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID431__Sto_A_4_6_neu.png|right|]] | + | [[File:P_ID431__Sto_A_4_6_neu.png|right|Koordinatendrehung einer 2D-WDF]] |
− | + | Wir betrachten in der Aufgabe eine zweidimensionale Gaußsche Zufallsgröße $(x, y)$ mit statistisch unabhängigen Komponenten. Die Streuungen der beiden Komponenten seien $\sigma_x = 1$ und $\sigma_y = 2$. | |
− | + | Berechnet werden soll die Wahrscheinlichkeit dafür, dass die zweidimensionale Zufallsgröße $(x, y)$ innerhalb des grün schraffiert eingezeichneten Bereichs liegt: | |
:$$-C \le x + y \le C.$$ | :$$-C \le x + y \le C.$$ | ||
− | + | Führen Sie zur Lösung eine Koordinatentransformation durch: | |
:$$\xi = \hspace{0.4cm} x +y,$$ | :$$\xi = \hspace{0.4cm} x +y,$$ | ||
:$$\eta= -x +y .$$ | :$$\eta= -x +y .$$ | ||
− | + | Dies entspricht einer Drehung des Koordinatensystems um $45^\circ$. Aus $x+y= \pm C$ folgt damit $\xi\pm C$. Die beiden zweidimensionalen Dichtefunktionen lauten dann: | |
− | :$$f_{xy} (x,y) = \frac{1}{4 \pi} \cdot \exp \left [ - ( x^2 /2 + y^2 /8) \right ] ,$$ | + | :$$f_{xy} (x,y) = \frac{1}{4 \pi} \cdot \exp \left [ - ( x^2\hspace {-0.1cm} /2 + y^2\hspace {-0.1cm} /8) \right ] ,$$ |
− | :$$f_{\xi\eta} (\xi, \eta) = \frac{1}{2 \pi \cdot \ | + | :$$f_{\xi\eta} (\xi, \eta) = \frac{1}{2 \pi \cdot \sigma_\xi \cdot \sigma_\eta \cdot \sqrt{1 - \rho_{\xi\eta}^2}} \cdot \exp \left [ - \frac{1}{2 \cdot (1 - \rho_{\xi\eta}^2)} \cdot ( \frac {\xi^2}{\sigma_\xi^2} + \frac {\eta^2}{\sigma_\eta^2 }- 2 \rho_{\xi\eta}\cdot \frac {\xi \cdot \eta}{\sigma_\xi \cdot \sigma_\eta}) \right ] .$$ |
− | : | + | ''Hinweise:'' |
+ | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen|Zweidimensionale Gaußsche Zufallsgrößen]]. | ||
+ | *Bezug genommen wird insbesondere auf die Seite [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen#Drehung_des_Koordinatensystems|Drehung des Koordinatensystems]]. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | *Gegeben sind die Näherungen ${\rm Q}(2.3) \approx 0.01$ und ${\rm Q}(2.6) \approx 0.005$ für das komplementäre Gaußsche Fehlerintegral. | ||
+ | *Nachfolgend gibt es Hyperlinks zu zwei Lernvideos, die diese Thematik behandeln: | ||
+ | :[[Gaußsche Zufallsgrößen ohne statistische Bindungen]] | ||
+ | :[[Gaußsche Zufallsgrößen mit statistischen Bindungen]] | ||
− | |||
Line 25: | Line 31: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Ermitteln Sie durch Koeffizientenvergleich das Verhältnis der beiden Streuungen der neuen Zufallsgröße ( | + | {Ermitteln Sie durch Koeffizientenvergleich das Verhältnis der beiden Streuungen der neuen Zufallsgröße $(\xi, \eta)$. |
|type="{}"} | |type="{}"} | ||
− | $\sigma_\xi/\sigma_\eta$ | + | $\sigma_\xi/\sigma_\eta \ = $ { 1 3% } |
− | {Berechnen Sie die Streuung | + | {Berechnen Sie die Streuung $\sigma_\xi$ und den Korrelationskoeffizienten $\rho_{\xi\eta}$ zwischen den neuen Zufallsgrößen $\xi$ und $\eta$. |
|type="{}"} | |type="{}"} | ||
− | $\sigma_\xi$ | + | $\sigma_\xi \ = $ { 2.236 3% } |
− | $\rho_ | + | $\rho_{\xi\eta} \ = $ { 0.6 3% } |
− | {Berechnen Sie die Wahrscheinlichkeit, | + | {Berechnen Sie die Wahrscheinlichkeit, dass $ |x+y| \le C$ gilt. Wie groß ist $C$ zu wählen, damit $99\%$ aller Größen im schraffierten Bereich liegen? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $C_{99\%} \ = $ { 5.814 3% } |
Revision as of 15:05, 20 March 2017
Wir betrachten in der Aufgabe eine zweidimensionale Gaußsche Zufallsgröße $(x, y)$ mit statistisch unabhängigen Komponenten. Die Streuungen der beiden Komponenten seien $\sigma_x = 1$ und $\sigma_y = 2$.
Berechnet werden soll die Wahrscheinlichkeit dafür, dass die zweidimensionale Zufallsgröße $(x, y)$ innerhalb des grün schraffiert eingezeichneten Bereichs liegt:
- $$-C \le x + y \le C.$$
Führen Sie zur Lösung eine Koordinatentransformation durch:
- $$\xi = \hspace{0.4cm} x +y,$$
- $$\eta= -x +y .$$
Dies entspricht einer Drehung des Koordinatensystems um $45^\circ$. Aus $x+y= \pm C$ folgt damit $\xi\pm C$. Die beiden zweidimensionalen Dichtefunktionen lauten dann:
- $$f_{xy} (x,y) = \frac{1}{4 \pi} \cdot \exp \left [ - ( x^2\hspace {-0.1cm} /2 + y^2\hspace {-0.1cm} /8) \right ] ,$$
- $$f_{\xi\eta} (\xi, \eta) = \frac{1}{2 \pi \cdot \sigma_\xi \cdot \sigma_\eta \cdot \sqrt{1 - \rho_{\xi\eta}^2}} \cdot \exp \left [ - \frac{1}{2 \cdot (1 - \rho_{\xi\eta}^2)} \cdot ( \frac {\xi^2}{\sigma_\xi^2} + \frac {\eta^2}{\sigma_\eta^2 }- 2 \rho_{\xi\eta}\cdot \frac {\xi \cdot \eta}{\sigma_\xi \cdot \sigma_\eta}) \right ] .$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Zweidimensionale Gaußsche Zufallsgrößen.
- Bezug genommen wird insbesondere auf die Seite Drehung des Koordinatensystems.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Gegeben sind die Näherungen ${\rm Q}(2.3) \approx 0.01$ und ${\rm Q}(2.6) \approx 0.005$ für das komplementäre Gaußsche Fehlerintegral.
- Nachfolgend gibt es Hyperlinks zu zwei Lernvideos, die diese Thematik behandeln:
- Gaußsche Zufallsgrößen ohne statistische Bindungen
- Gaußsche Zufallsgrößen mit statistischen Bindungen
Fragebogen
Musterlösung
- 1. Aus ξ = x + y und η = –x + y folgt direkt:
- $$x = \frac{1}{2} ( \xi - \eta ) ,\hspace{1cm}y = \frac{1}{2} ( \xi +\eta ) .$$
- Setzt man diese Werte für den negativen Exponenten ein, so erhält man:
- $$\frac{x^2}{2} + \frac{y^2}{8} = \frac{1}{8} ( \xi - \eta )^2 + \frac{1}{32} ( \xi + \eta )^2.$$
- Ausmultipliziert ergibt dies:
- $$\frac{5}{32} \cdot \xi^2 + \frac{5}{32} \cdot \eta^2 - \frac{3}{16} \cdot \xi \cdot \eta .$$
- Da die Koeffizienten bei ξ2 und η2 gleich sind, gilt σξ = ση. Der gesuchte Quotient ist somit 1.
- 2. Durch Koeffizientenvergleich erhält man für σξ = ση das Gleichungssystem:
- $$2 \cdot \sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)= \frac{32}{5},\hspace{0.5cm} \frac{\sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)}{\rho_{\xi\eta}}= \frac{16}{3}.$$
- Setzt man die erste Gleichung in die zweite ein, so ergibt sich ρξη = 0.6 und σξ = 5½ ≈ 2.236.
- 3. Nach Koordinatentransformation kann man für diese Wahrscheinlichkeit schreiben:
- $${\rm Pr} ( | x + y | \le C ) = {\rm Pr} ( | \xi | \le C ) = 1 - 2 \cdot {\rm Pr} ( \xi >C ).$$
- Mit dem komplementären Gaußschen Fehlerintegral folgt daraus weiter:
- $${\rm Pr} ( | x + y | \le C ) = 1 - 2 \cdot {\rm Q} ( \frac{C}{\sigma_\xi}) = 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q} ( \frac{C}{\sigma_\xi}) = 0.005.$$
- Mit dem angegebenen Wert Q(2.6) ≈ 0.005 erhält man somit das Ergebnis: C ≈ 2.6 · σξ = 5.814.