Difference between revisions of "Aufgaben:Exercise 4.16Z: Multi-dimensional Data Reduction"
Line 15: | Line 15: | ||
Hierbei ist zu berücksichtigen, dass jede Komponente entsprechend ihrer jeweiligen Streuung ($\sigma_1$ bzw. $\sigma_2$) im Bereich von $-4$ bis $+4$ zu quantisieren ist und die Quantisierungsintervalle in beiden Richtungen gleich sein sollen: $\Delta_x = \Delta_y =1/32$. | Hierbei ist zu berücksichtigen, dass jede Komponente entsprechend ihrer jeweiligen Streuung ($\sigma_1$ bzw. $\sigma_2$) im Bereich von $-4$ bis $+4$ zu quantisieren ist und die Quantisierungsintervalle in beiden Richtungen gleich sein sollen: $\Delta_x = \Delta_y =1/32$. | ||
− | Den Quotienten $N_2'/N_2$ bezeichnen wir als Datenreduktionsfaktor bezüglich der 2D-Zufallsgröße $\mathbf{y}$. In analoger Definition ist $N_3'/N_3$ der entsprechende Reduktionsfaktor der 3D-Zufallsgröße $\mathbf{z}$ für $\Delta_x = \Delta_y =\Delta_z =1/32$ Anzumerken ist, dass in beiden Fällen ein möglichst kleiner Wert günstig wäre. | + | Den Quotienten $N_2'/N_2$ bezeichnen wir als Datenreduktionsfaktor bezüglich der 2D-Zufallsgröße $\mathbf{y}$. In analoger Definition ist $N_3'/N_3$ der entsprechende Reduktionsfaktor der 3D-Zufallsgröße $\mathbf{z}$ für $\Delta_x = \Delta_y =\Delta_z =1/32.$ Anzumerken ist, dass in beiden Fällen ein möglichst kleiner Wert dieses Quotienten günstig wäre. |
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen|Verallgemeinerung auf N-dimensionale Zufallsgrößen]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen|Verallgemeinerung auf N-dimensionale Zufallsgrößen]]. | ||
− | * | + | *Insbesondere wird auf die Seite [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Eigenwerte_und_Eigenvektoren|Eigenwerte und Eigenvektoren]] Bezug genommen. |
+ | *Grundlagen zur Anwendung von Vektoren und Matrizen finden sich auf den Seiten [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Determinante_einer_Matrix|Determinante einer Matrix]] sowie [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Inverse_einer_Matrix|Inverse einer Matrix]]. | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | * | + | *Die Bestimmungsgleichung der Eigenwerte von $\mathbf{K_z}$ lautet: $\lambda^3 - 3 \lambda^2 + {24}/{9}\lambda - {20}/{27} = 0.$ |
− | + | *Eine der drei Lösungen dieser Gleichung ist $\lambda_1 = 5/3$. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 10:15, 4 April 2017
Wir betrachten Gaußsche mittelwertfreie Zufallsgrößen $\mathbf{x}$, $\mathbf{y}$ und $\mathbf{z}$ mit den Dimensionen $N= 1$, $N= 2$ und $N= 3$:
- Die eindimensionale Zufallsgröße $\mathbf{x}$ ist durch die Varianz $\sigma^2 = 1$ bzw. die Streuung $\sigma = 1$ charakterisiert. Wegen der Dimension $N= 1$ gilt $\mathbf{x} = x$.
- Der Korrelationskoeffizient zwischen den Komponenten $y_1$ und $y_2$ der 2D-Zufallsgröße $\mathbf{y}$ beträgt $\rho = 1/3$ (siehe Matrix $\mathbf{K_y}$). $y_1$ und $y_2$ weisen ebenfalls die Streuung $\sigma = 1$ auf.
- Die Statistik der dreidimensionalen Zufallsgröße $\mathbf{z}$ ist durch die Korrelationsmatrix $\mathbf{K_z}$ vollständig bestimmt.
Quantisiert man die Zufallsgröße $\mathbf{x}$ im Bereich zwischen $-4$ und $+4$ mit Intervallbreite $\Delta_x = 1/32$, so gibt es insgesamt $N_1 = 256$ unterschiedliche Quantisierungswerte, für deren Übertragung somit $n_1 = 8\ \rm {Bit}$ benötigt würden.
Analog ergeben sich bei der Zufallsgröße $\mathbf{y}$ insgesamt $N_2 = 256^2 = 65536$ unterschiedliche quantisierte Wertepaare, wenn man die Korrelation zwischen $y_1$ und $y_2$ nicht berücksichtigt. Durch Ausnutzung dieser Korrelation – zum Beispiel durch Koordinatentransformation vom Ursprungsystem $(y_1, y_2)$ zum neuen System $(\eta_1, \eta_2)$ – ergibt sich eine geringere Zahl $N_2'$ quantisierter Wertepaare.
Hierbei ist zu berücksichtigen, dass jede Komponente entsprechend ihrer jeweiligen Streuung ($\sigma_1$ bzw. $\sigma_2$) im Bereich von $-4$ bis $+4$ zu quantisieren ist und die Quantisierungsintervalle in beiden Richtungen gleich sein sollen: $\Delta_x = \Delta_y =1/32$.
Den Quotienten $N_2'/N_2$ bezeichnen wir als Datenreduktionsfaktor bezüglich der 2D-Zufallsgröße $\mathbf{y}$. In analoger Definition ist $N_3'/N_3$ der entsprechende Reduktionsfaktor der 3D-Zufallsgröße $\mathbf{z}$ für $\Delta_x = \Delta_y =\Delta_z =1/32.$ Anzumerken ist, dass in beiden Fällen ein möglichst kleiner Wert dieses Quotienten günstig wäre.
Hinweise:
- Die Aufgabe gehört zum Kapitel Verallgemeinerung auf N-dimensionale Zufallsgrößen.
- Insbesondere wird auf die Seite Eigenwerte und Eigenvektoren Bezug genommen.
- Grundlagen zur Anwendung von Vektoren und Matrizen finden sich auf den Seiten Determinante einer Matrix sowie Inverse einer Matrix.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Die Bestimmungsgleichung der Eigenwerte von $\mathbf{K_z}$ lautet: $\lambda^3 - 3 \lambda^2 + {24}/{9}\lambda - {20}/{27} = 0.$
- Eine der drei Lösungen dieser Gleichung ist $\lambda_1 = 5/3$.
Fragebogen
Musterlösung
- 1. Aus der Bedingung Ky – λ · E = 0 folgt:
- $${\rm det}\left[ \begin{array}{cc} 1- \lambda & 1/3 \\ 1/3 & 1- \lambda \end{array} \right] = (1-\lambda)^2 -\frac{1}{9} = 0$$
- $$\Rightarrow \hspace{0.3cm}\lambda^2 -2\lambda+ \frac{8}{9}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\lambda_{1/2}= 1 \pm \sqrt{1-\frac{8}{9}}= 1 \pm \frac{1}{3}.$$
- Die Eigenwerte dieser 2×2-Matrix sind somit λ1 = 4/3 und λ2 = 2/3.
- 2. Ohne Berücksichtigung von Korrelationen gibt es
- $$N_2 = \left( \frac{8}{\it \Delta_x}\right)^2= 256^2 = 65536$$
- verschiedene Wertepaare. Unter Berücksichtigung der Korrelationen und des Sachverhaltes, dass die beiden durch Koordinatendrehung entstandenen Komponenten η1 und η2 jeweils im Bereich von –4σ1 bis +4σ1 (bzw. von –4σ2 bis +4σ2) zu quantisieren sind, erhält man
- $$N_2' = \frac{8 \hspace{0.05cm}\sigma_1}{\it \Delta_x}\cdot\frac{8 \hspace{0.05cm}\sigma_2}{\it \Delta_y}= N_2 \cdot \sigma_1 \cdot \sigma_2 .$$
- Der Quotient lautet somit mit σ12 = λ1 und σ22 = λ2:
- $$\frac{N_2'}{N_2} = \sigma_1 \cdot \sigma_2 = \sqrt{{4}/{3}} \cdot \sqrt{{2}/{3}} = \frac{2 \cdot \sqrt{2}}{3} \hspace{0.15cm}\underline{ \approx 0.943}.$$
- 3. Die Bestimmungsgleichung der Eigenwerte von Kz lautet:
- $${\rm det} \left[ \begin{array}{ccc} 1-\lambda & 1/3 & 1/3\\ 1/3 & 1-\lambda & 1/3\\ 1/3 & 1/3 & 1-\lambda \end{array}\right] = 0$$
- $$\Rightarrow \hspace{0.3cm}(1- \lambda) \left[(1- \lambda)^2 - \frac{1}{9} \right]- \frac{1}{3} \left[\frac{1}{3}(1- \lambda) - \frac{1}{9} \right] + \frac{1}{3} \left[\frac{1}{9} - \frac{1}{3}(1- \lambda) \right] = 0$$
- $$\Rightarrow \hspace{0.3cm}(1- \lambda) (\lambda^2 -2\lambda+ \frac{8}{9})- \frac{1}{9} (\frac{2}{3}- \lambda )+ \frac{1}{9} ( \lambda - \frac{2}{3})= 0$$
- $$\Rightarrow \hspace{0.3cm}\lambda^2 - 2\lambda + \frac{8}{9} - \lambda^3 + 2 \lambda^2 - \frac{8}{9}\lambda - \frac{4}{27} + \frac{2}{9}\lambda = 0$$
- $$\Rightarrow \hspace{0.3cm}\lambda^3 - 3 \lambda^2 + \frac{24}{9}\lambda - \frac{20}{27} = 0.$$
- Diese Gleichung wurde bereits als Lösungshinweis angegeben, ebenso wie eine der Lösungen: <nobr>λ1 = 5/3.</nobr> Damit ergibt sich die Bestimmungsgleichung für die weiteren Eigenwerte λ2 und λ3 zu
- $$\frac{\lambda^3 - 3 \lambda^2 + {24}/{9}\lambda - {20}/{27}}{\lambda -{5}/{3}} = \lambda^2 - {4}/{3} \cdot \lambda + {4}/{9} =0.$$
- Diese Bestimmungsgleichung lässt sich wie folgt umformen:
- $$(\lambda - {2}/{3})^2 =0.$$
- Die weiteren Eigenwerte neben λ1 = 5/3 sind somit gleich und ergeben sich zu λ2 = λ3 = 2/3.
- 4. Analog zur Vorgehensweise unter Punkt b) ergibt sich hier:
- $$\frac{N_3'}{N_3} = \sqrt{\lambda_1 \cdot \lambda_2\cdot \lambda_3} = \sqrt{\frac{5}{3} \cdot \frac{2}{3}\cdot \frac{2}{3}} = \sqrt{\frac{20}{27}} \hspace{0.15cm}\underline{ \approx 0.861}.$$