Difference between revisions of "Klassische Definition der Wahrscheinlickeit (Lernvideo)"

From LNTwww
Line 3: Line 3:
 
Die Klassische Definition der Wahrscheinlichkeit geht von $M$ Elementarergebnissen $E_\mu$ aus, die alle gleichwahrscheinlich sind und zusammen ein vollständiges System bilden. Das heißt: Alle  Ergebnissen $E_\mu$ sind paarweise disjunkt und die Vereinigungsmenge über alle $E_\mu$ ergibt die Grundmenge $G$. Die Wahrscheinlichkeit für ein solches Elementarergebnis ist somit  ${\rm Pr}(E_\mu) = 1/M.$
 
Die Klassische Definition der Wahrscheinlichkeit geht von $M$ Elementarergebnissen $E_\mu$ aus, die alle gleichwahrscheinlich sind und zusammen ein vollständiges System bilden. Das heißt: Alle  Ergebnissen $E_\mu$ sind paarweise disjunkt und die Vereinigungsmenge über alle $E_\mu$ ergibt die Grundmenge $G$. Die Wahrscheinlichkeit für ein solches Elementarergebnis ist somit  ${\rm Pr}(E_\mu) = 1/M.$
  
Zur Erzeugung einer gaußverteilten Zufallsgröße kann man die Tatsache nutzen, dass sich eine solche Gaußverteilung zum Beispiel dann ergibt, wenn man eine Gleichverteilung (Rechteck-WDF) unendlich oft mit sich selbst faltet. Das Lernvideo (Dauer 3:42) verdeutlicht das Prinzip:
+
Dann ist die Wahrscheinlichkeit für das Ereignis $A$, das sich aus $K$ solcher Elementarergebnissen zusammensetzt: ${\rm Pr}(A) = K/M.$
*Die Summe $s = x_1 + x_2$ besitzt eine dreieckförmige WDF $f_s(s)$ zwischen $\pm 1$, wenn die zwei unabhängigen Komponenten $x_1$ und $x_2$ jeweils zwischen $\pm 0.5$  gleichverteilt sind. Dies ist die erste einfache Approximation der Gaußverteilung basierend auf der Faltung für den Prarneter $I = 2$.
 
*Addiert man nun nicht nur zwei, sondern $I$ solche statistisch unabhängige Komponenten, so wird die Approximation immer besser, je größer $I$ ist. Man erkauft sich die bessere Approximationsqualität mit steigendem $I$ allerdings auch mit einem größeren Rechenaufwand. 
 
*Erforderlich ist dabei stets eine Varianzanpassung, das heißt je größer $I$ ist, desto schmäler muss die  rechteckförmige WDF $f_x(x)$ der als identisch angenommenen Eingangsgrößen $x_i$ mit $i = 1$, ... ,$I$ sein, wenn $\sigma_s$ vorgegeben ist.
 
*Mit der hier beschriebenen Additionsmethode lässt sich der innere Bereich der Gaußschen Glockenkurve sehr gut nachbilden. Dagegen werden die Ausläufer der Gaußkurve unzureichend nachgebildet, außer, man wählt $I$ extrem groß.
 
  
 +
Das Lernvideo (Dauer 5:18) verdeutlicht den hier genannten Zusammenhang und zeigt an je einem Beispiel, wann die Anwendung der Klassische Wahrscheinlichkeits-Definition gerechtfertigt ist und wann nicht.
  
  

Revision as of 16:50, 22 May 2017

Inhalt

Die Klassische Definition der Wahrscheinlichkeit geht von $M$ Elementarergebnissen $E_\mu$ aus, die alle gleichwahrscheinlich sind und zusammen ein vollständiges System bilden. Das heißt: Alle Ergebnissen $E_\mu$ sind paarweise disjunkt und die Vereinigungsmenge über alle $E_\mu$ ergibt die Grundmenge $G$. Die Wahrscheinlichkeit für ein solches Elementarergebnis ist somit ${\rm Pr}(E_\mu) = 1/M.$

Dann ist die Wahrscheinlichkeit für das Ereignis $A$, das sich aus $K$ solcher Elementarergebnissen zusammensetzt: ${\rm Pr}(A) = K/M.$

Das Lernvideo (Dauer 5:18) verdeutlicht den hier genannten Zusammenhang und zeigt an je einem Beispiel, wann die Anwendung der Klassische Wahrscheinlichkeits-Definition gerechtfertigt ist und wann nicht.



Dieses Lernvideo wurde 2004 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch, Regie und Sprecher: Günter Söder,   Fachliche Beratung: Ioannis Oikokonomidis,  Realisierung: Franz Kohl und Winfried Kretzinger.

Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.