Difference between revisions of "Aufgaben:Exercise 3.6: Partitioning Inequality"

From LNTwww
Line 8: Line 8:
 
:$$P_X(X) = P_X (  x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  )\hspace{0.05cm},$$
 
:$$P_X(X) = P_X (  x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  )\hspace{0.05cm},$$
 
:$$Q_X(X) =Q_X (  x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  ), $$  
 
:$$Q_X(X) =Q_X (  x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  ), $$  
aus, die in irgendeiner Form „ähnlich” sein sollen
+
aus, die in irgendeiner Form „ähnlich” sein sollen.
* Die Menge $X$ unterteilen wir in die Partitionen $A_1, \text{...} , A_K$ , die zueinander disjunkt sind und ein $vollständiges System$ ergeben:
+
 
:$X = \big \{ \hspace{0.05cm} x_1, \hspace{0.05cm} x_2, ... \hspace{0.05cm}, \hspace{0.05cm} x_M  \hspace{0.05cm} \big \}$
+
* Die Menge $X$ unterteilen wir in die Partitionen $A_1, \text{...} , A_K$ , die zueinander [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjunkt]] sind und ein [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Vollst.C3.A4ndiges_System|vollständiges System]] ergeben:
 +
:$X$$ = \big \{ \hspace{0.05cm} x_1, \hspace{0.05cm} x_2, ... \hspace{0.05cm}, \hspace{0.05cm} x_M  \hspace{0.05cm} \big \}$$
 +
 
 
* Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen $A_1, A_2, \text{...} , A_K$ bezeichnen wir im Folgenden mit  
 
* Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen $A_1, A_2, \text{...} , A_K$ bezeichnen wir im Folgenden mit  
 
 
:$$P_X^{\hspace{0.15cm}(A)} = \left [ P_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},P_X (  A_K  ) \right ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X (  A_i  ) = \sum_{ x \in A_i} P_X ( x  )\hspace{0.05cm},$$
 
:$$P_X^{\hspace{0.15cm}(A)} = \left [ P_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},P_X (  A_K  ) \right ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X (  A_i  ) = \sum_{ x \in A_i} P_X ( x  )\hspace{0.05cm},$$
 
:$$Q_X^{\hspace{0.15cm}(A)}= \left [ Q_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},Q_X (  A_K  ) \right ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X (  A_i  ) = \sum_{ x \in A_i} Q_X ( x  )\hspace{0.05cm}. $$
 
:$$Q_X^{\hspace{0.15cm}(A)}= \left [ Q_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},Q_X (  A_K  ) \right ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X (  A_i  ) = \sum_{ x \in A_i} Q_X ( x  )\hspace{0.05cm}. $$
  
$Q_X^{ (A) } = [ Q_X(A_1),.......,Q_X(A_K)]$ ,  wobei    $Q_X(A_i) = \sum\limits_{ x \epsilon A_i } Q_X(x)$
+
{{BlaueBox|TEXT=
 
+
Die '''Partitionierungsungleichung''' liefert folgende Größenrelation hinsichtlich der Kullback–Leibler–Distanzen:
Die $Partitionierungsungleichung$ liefert folgende Größenrelation hinsichtlich der Kullback–Leibler–Distanzen:
+
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)})  
 
+
\hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$}}
$D(P_X^{ (A) } \parallel Q_X^{ (A) } ) \leq  D(P_X \parallel Q_X)$
 
 
 
  
In der Aufgabe (a) soll die Kullback–Leibler–Distanz der beiden Wahrscheinlichkietsfunktionen $P_X(X)$ und $Q_X(X)$ für $X = \{0, 1, 2\} \Rightarrow  |X| = 3$ ermittelt werden. Anschließend soll die Menge $X$ entsprechend
 
:* $A = \{A_1 , A_2\}$  mit  $A_1 =\{0\}$  und $A_2 = \{ 1,2 \}$ ,
 
:* $B = \{B_1 , B_2\}$  mit  $B_1 =\{1\}$  und $B_2 = \{ 0,2 \}$ ,
 
:* $C = \{C_1 , C_2\}$  mit  $C_1 =\{2\}$  und $C_2 = \{  0,1\}$ ,
 
  
mit $K = 2$ partitioniert werden und es sollen die jeweiligen Kullback–Leibler–Distanzen
+
In Teilaufgabe (1) soll die Kullback–Leibler–Distanz der beiden Wahrscheinlichkeitsfunktionen $P_X(X)$ und $Q_X(X)$ für $X = \{0, 1, 2\}$  ⇒  $|X| = 3$ ermittelt werden. Anschließend soll die Menge $X$ mit $K = 2$ partitioniert werden entsprechend
:* $D(P_X^{ (A) } \parallel Q_X^{ (A) } )$
+
* $A = \{A_1 , A_2\}$  mit  $A_1 =\{0\}$  und $A_2 = \{ 1,2 \}$ ,
 +
* $B = \{B_1 , B_2\}$  mit  $B_1 =\{1\}$  und $B_2 = \{ 0,2 \}$,
 +
* $C = \{C_1 , C_2\}$  mit  $C_1 =\{2\}$  und $C_2 = \{ 0,1\}$,
  
:* $D(P_X^{ (B) } \parallel Q_X^{ (B) } )$ ,
+
Anschließend sollen die jeweiligen Kullback–Leibler–Distanzen angegeben werden:
 +
* $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
 +
* $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
 +
* $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
  
:* $D(P_X^{ (C) } \parallel Q_X^{ (C) } )$
+
In der Teilaufgabe (5) wird schließlich nach den Bedingungen gefragt, damit in der obigen Ungleichung das Gleichheitszeichen zutrifft.
angegeben werden. In Aufgabe (e) wird schließlich nach den Bedingungen gefragt, damit in der obigen Ungleichung das Gleichheitszeichen zutrifft.
 
  
  
Line 40: Line 39:
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
 
*Insbesondere wird Bezug genommen auf die Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative Entropie – Kullback-Leibler-Distanz]].
 
*Insbesondere wird Bezug genommen auf die Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative Entropie – Kullback-Leibler-Distanz]].
*Die Angaben der Entropie  $H(Y)$ und der Kullback–Leibler–Distanz  $D( P_X \hspace{0.05cm}|| \hspace{0.05cm}P_Y)$  in obiger Grafik sind in „bit” zu verstehen.
 
* Die in der Grafik  mit „???"  versehenen Felder sollen von Ihnen in dieser Aufgabe ergänzt werden.
 
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
+
*Die beiden  Wahrscheinlichkeitsfunktionen können aus obiger Grafik wie folgt abgelesen werden:
'''Hinweis:''' Die Aufgabe gehört zu
+
:$$P_X(X) = [1/4 , 1/2 , 1/4],$$
[http://en.lntwww.de/Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgr%C3%B6%C3%9Fen Kapitel 3.1].Die Wahrscheinlichkeitsfunktionen können aus obiger Grafik abgelesen werden:
+
:$$Q_X(X) = [1/8 , 3/4, 1/8].$$
 
 
$P_X(X) = [1/4 , 1/2 , 1/4]$
 
 
 
$Q_X(X) = [1/8 , 3/4, 1/8]$
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

Revision as of 14:40, 31 May 2017

Wahrscheinlichkeitsfunktionen PX und QX

Die Kullback–Leibler–Distanz (kurz KLD) wird auch in der „Partitionierungsungleichung” (englisch: Partition Unequality) verwendet:

  • Wir gehen von der Menge $X = \{ x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M \}$ und den Wahrscheinlichkeitsfunktionen
$$P_X(X) = P_X ( x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M )\hspace{0.05cm},$$
$$Q_X(X) =Q_X ( x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M ), $$

aus, die in irgendeiner Form „ähnlich” sein sollen.

$X$$ = \big \{ \hspace{0.05cm} x_1, \hspace{0.05cm} x_2, ... \hspace{0.05cm}, \hspace{0.05cm} x_M \hspace{0.05cm} \big \}$$
  • Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen $A_1, A_2, \text{...} , A_K$ bezeichnen wir im Folgenden mit
$$P_X^{\hspace{0.15cm}(A)} = \left [ P_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},P_X ( A_K ) \right ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X ( A_i ) = \sum_{ x \in A_i} P_X ( x )\hspace{0.05cm},$$
$$Q_X^{\hspace{0.15cm}(A)}= \left [ Q_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},Q_X ( A_K ) \right ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X ( A_i ) = \sum_{ x \in A_i} Q_X ( x )\hspace{0.05cm}. $$

Die Partitionierungsungleichung liefert folgende Größenrelation hinsichtlich der Kullback–Leibler–Distanzen:

$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) \hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$


In Teilaufgabe (1) soll die Kullback–Leibler–Distanz der beiden Wahrscheinlichkeitsfunktionen $P_X(X)$ und $Q_X(X)$ für $X = \{0, 1, 2\}$  ⇒  $|X| = 3$ ermittelt werden. Anschließend soll die Menge $X$ mit $K = 2$ partitioniert werden entsprechend

  • $A = \{A_1 , A_2\}$ mit $A_1 =\{0\}$ und $A_2 = \{ 1,2 \}$ ,
  • $B = \{B_1 , B_2\}$ mit $B_1 =\{1\}$ und $B_2 = \{ 0,2 \}$,
  • $C = \{C_1 , C_2\}$ mit $C_1 =\{2\}$ und $C_2 = \{ 0,1\}$,

Anschließend sollen die jeweiligen Kullback–Leibler–Distanzen angegeben werden:

  • $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
  • $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
  • $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.

In der Teilaufgabe (5) wird schließlich nach den Bedingungen gefragt, damit in der obigen Ungleichung das Gleichheitszeichen zutrifft.


Hinweise:

$$P_X(X) = [1/4 , 1/2 , 1/4],$$
$$Q_X(X) = [1/8 , 3/4, 1/8].$$


Fragebogen

1

Berechnen Sie die Kullback–Leibler–Distanz (KLD) allgemein.

$ D(P_X \parallel Q_X)$ =

$bit$

2

Welche KLD ergibt sich für die Partitionierung $ A_1 = \{0\}, A_2 = \{1, 2\}$?

$D(P_X^{ (A) } \parallel Q_X^{ (A) } )$ =

$bit$

3

Welche KLD ergibt sich für die Partitionierung $ B_1 = \{1\}, A_2 = \{0, 2\}$?

$D(P_X^{ (B) } \parallel Q_X^{ (B) } )$ =

$bit$

4

Welche KLD ergibt sich für die Partitionierung $ C_1 = \{2\}, A_2 = \{0, 1\}$?

Das gleiche Ergebnis wie für die Partitionierung $A$.
Das gleiche Ergebnis wie für die Partitionierung $B$.
Ein ganz anderes Ergebnis.

5

Unter welchen Bedingungen ergibt sich für allgemeines $K$ die Gleichheit?

Es müssen $|X|$ Gleichungen erfüllt sein.
Für $x \epsilon A_i$ muss gelten : $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$


Musterlösung

1. Für die Kullback–Leibler–Distanz (KLD) gilt:

$$D(P_X \parallel P_Y) = E [ log_2 \frac{P_X(X)}{P_Y(X)}] = \sum\limits_{ x \epsilon X} P_X(x) . log_2 \frac{P_X(x)}{P_Y(x)} =$$

$$\frac{1}{2} . log_2 \frac{1/2}{3/4} + 2 . \frac{1}{4} . log_2 \frac{1/4}{1/8} +log_2 \frac{2}{3} + \frac{1}{2} . log_2(2) =$$

$$1 - \frac{1}{2} . log_2(3) = 0.2075 (bit)$$


2. $Partitionierung A \Rightarrow A_1 = \{0\}$ , $A_2 = \{ 1 , 2 \}$ : Man erhält die Wahrscheinlichkeitsfunktionen $P_X^{ (A) } (X) = \{1/4 , 3/4\}$ und $Q_X^{ (A) } (X) = \{1/8 , 7/8\}$. Daraus folgt:

$$D(P_X^{ (A) } \parallel Q_X^{ (A) } )$ = \frac{1}{4} . log_2 \frac{1/4}{1/8} + \frac{3}{4} . log_2 \frac{3/4}{7/8} =$$

$$ = \frac{1}{4} . log_2 (2) + \frac{3}{4} . log_2 \frac{6}{7} = 0.0832 (bit)$$ Es ergibt sich also eine kleinere KLD als in Teilaufgabe (a).


3. $Partitionierung B \Rightarrow B_1 = \{1\}$ , $B_2 = \{ 0 , 2 \}$ : Man erhält die Wahrscheinlichkeitsfunktionen $P_X^{ (B) } (X) = \{1/2 , 1/2\}$ und $Q_X^{ (B) } (X) = \{3/4 , 1/4\}$. Analog zur Teilaufgabe (b) erhält man nun:

$$D(P_X^{ (B) } \parallel Q_X^{ (B) } ) = \frac{1}{2} . log_2 \frac{1/2}{3/4} + \frac{1}{2} . log_2 \frac{1/2}{1/4} = 0.2075$$ $\Rightarrow$ gleiches Ergebnis wie in Aufgabe (a) $\Rightarrow$ Bei Partitionierung (B) gilt das Gleichheitszeichen.


4.$Partitionierung C \Rightarrow C_1 = \{2\}$ , $C_2 = \{ 0 , 1\}$ : Man erhält $P_X^{ (C) } (X) = \{1/4, 3/4\}$ , $Q_X^{ (C) } (X) = \{1/8, 7/8\}$ . also die gleichen Funktionen wie bei der Partitionierung $A \Rightarrow Lösungsvorschlag 1$.


5. Partitionierung $B$ hat zum Ergebnis $D(P_X^{ (B) } \parallel Q_X^{ (B) } ) = D(P_X \parallel Q_X)$ geführt. Für diesen Fall ist


$\frac{P_X(1)}{Q_X(1)} = \frac{1/2}{3/4} = \frac{2}{3}$ , $\frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = \frac{2}{3}$,

$\frac{P_X(0)}{Q_X(0)} = \frac{1/4}{1/8} = 2$ , $\frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2$,

$\frac{P_X(2)}{Q_X(2)} = \frac{1/4}{1/8} = 2$ , $\frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2$

Es muss also für alle $x \epsilon X$ gelten :

$\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_1)}{Q_X(B_1)} $ , falls $ x \epsilon B_1$

$\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_2)}{Q_X(B_2)} $ , falls $ x \epsilon B_2$

Durch Verallgemeinerung erhält man, dass $beide Lösungsvorschläge$ richtig sind.