Difference between revisions of "Aufgaben:Exercise 3.10Z: BSC Channel Capacity"
m (Guenter verschob die Seite 3.09Z BSC–Kanalkapazität nach 3.10Z BSC–Kanalkapazität) |
|
(No difference)
|
Revision as of 10:00, 1 June 2017
Die Kanalkapazität $C$ wurde von Claude $E$. Shannon als die maximale Transinformation definiert, wobei sich die Maximierung allein auf die Quellenstatistik bezieh $$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}$$ Beim Binärkanal mit der Wahrscheinlichkeitsfunktion $P_X(X) = [p_0, p:1]$ ist nur ein Parameter optimierbar, beispielsweise $p_0$. Die Wahrscheinlichkeit für eine $„1”$ ist damit ebenfalls festgelegt: $p_1 = 1 – p_0$
Die obere Grafik (rot hinterlegt) fasst die Ergebnisse für den unsymmetrischen Binärkanal mit $ε_0 = 0.01$ und $ε_1 = 0.2$ zusammen, der im Theorieteil betrachtet wurde. Die Maximierung führt zum Ergebnis $p_0 = 0.55$
$\Rightarrow p_1 = 0.45$, und man erhält für die Kanalkapazität: $$C_{\rm BC} = \hspace{-0.05cm} \max_{P_X(X)} \hspace{0.1cm} I(X;Y) \big |_{p_0 \hspace{0.05cm} = \hspace{0.05cm}0.55} \hspace{0.05cm}=\hspace{0.05cm} 0.5779\,{\rm bit} \hspace{0.05cm}$$
In der unteren Grafik (blaue Hinterlegung) sind die gleichen informationstheoretischen Größen für den symmetrischen Kanal $\Rightarrow$ Binary Symmetric Channel (BSC) mit den Verfälschungswahrscheinlichkeiten $ε1 = ε2 = ε = 0.1$ angegeben, der auch für die Aufgabe A3.9 vorausgesetzt wurde.
In der vorliegenden Aufgabe sollen Sie für das BSC–Kanalmodell (zunächst für $ε = 0\ cdot 1$)
- die Entropien $H(X)$, $H(Y)$, $H(X|Y)$, $H(Y|X)$ analysieren,
- den Quellenparameter $p_0$ hinsichtlich maximaler Transinformation $I(X; Y)$ optimieren,
- somit die Kanalkapazität $C(ε)$ bestimmen, sowie
- durch Verallgemeinerung eine geschlossene Gleichung für $C(ε)$ angeben.
Hinweis: Die Aufgabe bezieht sich auf die Thematik von Kapitel 3.3
Fragebogen
Musterlösung
Richtig ist vielmehr der Lösungsvorschlag 2, wie die folgende Rechnung zeigt: $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{-0.15cm} =\hspace{-0.15cm} p_0 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} + p_0 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} +$$ $$ \hspace{-0.15cm} p_1 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + p_1 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} =$$ $$=\hspace{-0.15cm} (p_0 + p_1) \cdot \left [ \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} \right ] \hspace{0.05cm}.$$ Mit $p_0 + p_1 = 1$n und der binären Entropiefunktion $\Rightarrow H_{bin}$ erhält man das vorgeschlagene Ergebnis: $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin}(\varepsilon)\hspace{0.05cm}$$ Für $ε = 0.1$ ergibt sich $H(Y|X) = 0.4690 bit$. Der gleiche Wert steht für alle $p_0$ in der gegebenen Tabelle. 2. Zutreffend sind hier alle vorgegebenen Lösungsalternativen. Die Kanalkapazität ist definiert als die maximale Transinformation, wobei die Maximierung hinsichtlich $P_X = (p_0, p_1)$ zu erfolgen hat: $$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}$$ Diese Gleichung gilt allgemein, also auch für den rot hinterlegten unsymmetrischen Binärkanal (BC).
Die Transinformation kann zum Beispiel allgemein wie folgt berechnet werden: $$I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm}$$
3.Die Grafik rechts zeigt die binäre Entropiefunktion und rechts die Kanalkapazität. Man erhält:
- für $ε = 0$ (fehlerfreier Kanal): $C = 1 (bit) \Rightarrow$ Punkt mit gelber Füllung,
- für $ε = 0.1$ (bisher betrachtet): $C = 0.531 (bit) ) \Rightarrow$ Punkt mit grüner Füllung,
- für $ε = 0.5$ (vollkommen gestört): $C = 0 (bit) \Rightarrow$ Punkt mit grauer Füllung
4. Aus der Grafik erkennt man, dass aus informationstheoretischer Sicht $ε = 1$ gleich ist wie $ε = 0$ : $$C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}1} \hspace{0.05cm}= C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0} \hspace{0.15cm} \underline {=1\,{\rm (bit)}} \hspace{0.05cm}$$ Der Kanal nimmt hier nur eine Umbenennung vor. Man spricht von Mapping. Aus jeder $„0”$ wird eine $„1”$ und aus jeder $„1”$ eine $„0”$. Entsprechend gilt: $$C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0.9} \hspace{0.05cm}= C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0.1} \hspace{0.15cm} \underline {=0.531\,{\rm (bit)}} \hspace{0.05cm}$$