Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.7Z: About the Water Filling Algorithm"

From LNTwww
Line 36: Line 36:
 
{Welche Strategien der Leistungszuteilung sind sinnvoll?
 
{Welche Strategien der Leistungszuteilung sind sinnvoll?
 
|type="[]"}
 
|type="[]"}
- Einem stark gestörten Kanal <i>k</i> (mit großer Störleistung <i>&sigma;<sub>k</sub></i><sup>2</sup>) sollte eine große Nutzleistung <i>P<sub>k</sub></i> zugewiesen werden.
+
- Einem stark gestörten Kanal $k$ (mit großer Störleistung $\sigma_k^2$ sollte eine große Nutzleistung Pk zugewiesen werden.
+ Einem stark gestörten Kanal <i>k</i> (mit großer Störleistung <i>&sigma;<sub>k</sub></i><sup>2</sup>) sollte nur eine kleine Nutzleistung <i>P<sub>k</sub></i> zugewiesen werden.
+
+ Einem stark gestörten Kanal $k$ (mit großer Störleistung $\sigma_k^2$ sollte nur eine kleine Nutzleistung Pk zugewiesen werden.
+ Bei <i>K</i> gleich guten Kanälen &nbsp;&#8658;&nbsp; <i>&sigma;</i><sub>1</sub><sup>2</sup> = ... = <i>&sigma;<sub>K</sub></i><sup>2</sup> = <i>&sigma;<sub>N</sub></i><sup>2</sup> sollte die Leistung gleichmäßig verteilt werden.       
+
+ Bei $K$ gleich guten Kanälen &nbsp; &#8658; &nbsp; $\sigma_1^2 = \text{...} = \sigma_K^2 = \sigma_N^2$ sollte die Leistung gleichmäßig verteilt werden.       
  
  
{Welche Transinformation <i>I</i> =  <i>I</i>(<i>X</i><sub>1</sub>, <i>X</i><sub>2</sub></i>; <i>Y</i><sub>1</sub>, <i>Y</i><sub>2</sub>) ergibt sich, wenn man die Sendeleistung <i>P<sub>X</sub></i> = 10 gleichmäßig auf beide Kanäle verteilt?
+
{Welche Transinformation $I(X_1, X_2; Y_1, Y_2)ergibt sich, wenn man die Sendeleistung $P_X = 10$ gleichmäßig auf beide Kanäle verteilt &nbsp; &#8658; &nbsp; P1=P2=5?
 
|type="{}"}
 
|type="{}"}
$P1 = P2 = 5:  I$ = { 1.877 3% }
+
$I(X_1, X_2; Y_1, Y_2) \ = \ $ { 1.877 3% }  bit
  
  
{Es gelte weiter <i>P<sub>X</sub></i> = 10. Welche optimale Leistungsaufteilung ergibt sich nach dem Water&ndash;Filling&ndash;Algorithmus?
+
{Es gelte weiter $P_X = P_1 + P_2 = 10$. Welche optimale Leistungsaufteilung ergibt sich nach dem Water&ndash;Filling&ndash;Algorithmus?
 
|type="{}"}
 
|type="{}"}
$PX = 10:  P1$ = { 6.5 3% }
+
$P_1  \ = \ $ { 6.5 3% }
$P1 = P2 = 5:  I$ = { 3.5 3% }
+
$P_2  \ = \ $ { 3.5 3% }
  
  
  
{Wie groß ist die Kanalkapazität für <i>K</i> = 2 und <i>P<sub>X</sub></i> = 10?
+
{Wie groß ist die Kanalkapazität für $K = 2$ und $P_X = 10$?
 
|type="{}"}
 
|type="{}"}
$C2(PX = 10)$ = { 1.907 3% }
+
$C_2  \ = \ $ { 1.907 3% }  bit
  
  
{Welche Ergebnisse erhält man mit <i>K</i> = 2 und <i>P<sub>X</sub></i> = 3?
+
{Welche Transinformation I(X1,X2;Y1,Y2)  ergibt sich, wenn man die Sendeleistung $P_X = 3 gleichmäßig auf beide Kanäle verteilt &nbsp; &#8658; &nbsp; P_1= P_2 = 1.5$?
 
|type="{}"}
 
|type="{}"}
$P1 = P2 = 1.5:  I$ = { 0.891 3% }
+
$I(X_1, X_2; Y_1, Y_2) \ = \ $ { 0.891 3% }\ \rm bit
$C2(PX = 3)$ = { 1 3% }
+
 
 +
{Wie groß ist die Kanalkapazität für $K = 2 und P_X = 3$?
 +
|type="{}"}
 +
$C_2  \ = \ $ { 1 3% } \ \rm bit
  
  

Revision as of 16:52, 12 June 2017

Water–Filling–Algorithmus mit K = 4

Wir betrachten K parallele Gaußsche Kanäle (AWGN) mit unterschiedlichen Störleistungen \sigma_k^2, wobei 1 \le k \le K gelten soll. Die Grafik verdeutlicht diese Konstellation am Beispiel K = 4.

Die Sendeleistung in den einzelnen Kanälen wird mit P_k bezeichnet, deren Summe den vorgegebenen Wert P_X nicht überschreiten darf:

P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.

Sind die Zufallsgrößen X_1, \text{...} , X_K gaußisch, so kann für die (gesamte) Transinformation zwischen dem Eingang X und dem Ausgang Y geschrieben werden:

I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) = 1/2 \cdot \sum_{k= 1}^K \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm} {\rm Ergebnis\hspace{0.15cm} in \hspace{0.15cm} bit} \hspace{0.05cm}.

Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems, wobei sich die Maximierung auf die Aufteilung der Gesamtleistung P_X auf die einzelnen Kanäle bezieht:

C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.

Diese Maximierung kann mit dem Water–Filling–Algorithmus geschehen, der in obiger Grafik für K = 4 dargestellt ist. In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden, wobei von folgenden Voraussetzungen auszugehen ist:

  • Zwei parallele Gaußkanäle   ⇒   K = 2,
  • Normierte Störleistungen \sigma_1^2 = 1 und \sigma_2^2 = 4,
  • Normierte Sendeleistungen P_X = 10 bzw. P_X = 3.


Hinweise:


Fragebogen

1

Welche Strategien der Leistungszuteilung sind sinnvoll?

Einem stark gestörten Kanal k (mit großer Störleistung \sigma_k^2 sollte eine große Nutzleistung P_k zugewiesen werden.
Einem stark gestörten Kanal k (mit großer Störleistung \sigma_k^2 sollte nur eine kleine Nutzleistung P_k zugewiesen werden.
Bei K gleich guten Kanälen   ⇒   \sigma_1^2 = \text{...} = \sigma_K^2 = \sigma_N^2 sollte die Leistung gleichmäßig verteilt werden.

2

Welche Transinformation I(X_1, X_2; Y_1, Y_2) ergibt sich, wenn man die Sendeleistung P_X = 10 gleichmäßig auf beide Kanäle verteilt   ⇒   P_1= P_2 = 5?

I(X_1, X_2; Y_1, Y_2) \ = \

\ \rm bit

3

Es gelte weiter P_X = P_1 + P_2 = 10. Welche optimale Leistungsaufteilung ergibt sich nach dem Water–Filling–Algorithmus?

P_1 \ = \

P_2 \ = \

4

Wie groß ist die Kanalkapazität für K = 2 und P_X = 10?

C_2 \ = \

\ \rm bit

5

Welche Transinformation I(X_1, X_2; Y_1, Y_2) ergibt sich, wenn man die Sendeleistung P_X = 3 gleichmäßig auf beide Kanäle verteilt   ⇒   P_1= P_2 = 1.5?

I(X_1, X_2; Y_1, Y_2) \ = \

\ \rm bit

6

Wie groß ist die Kanalkapazität für K = 2 und P_X = 3?

C_2 \ = \

\ \rm bit


Musterlösung

1. Nach den Ausführungen im im Theorieteil ist die Strategie „Water–Filling”  ⇒  Vorschlag 2 anzuwenden, wenn ungleiche Bedingungen vorliegen. Lösungsvorschlag 3 ist aber ebenfalls richtig: Bei gleich guten Kanälen spricht nichts dagegen, alle K Kanäle mit der gleichen Leistung P1 = ... = PK = PX/K zu versorgen.

2. Für die Transinformation gilt bei gleicher Leistungsaufteilung: I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) \ = \ \frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right ) +\frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=\\\hspace{-0.15cm} 1.292\,{\rm bit}+ 0.585\,{\rm bit} \hspace{0.15cm}\underline{= 1.877\,{\rm bit}} \hspace{0.05cm}.

Leistungsaufteilung für PX = 10

3. Entsprechend nebenstehender Skizze muss gelten:

P_2 \hspace{-0.15cm} = \hspace{-0.15cm} P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3\hspace{0.05cm},P_1 + P_2 \hspace{-0.15cm} = \hspace{-0.15cm} P_X = 10 \Rightarrow \hspace{0.3cm} P_1 + (P_1 -3) = 10 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot P_1 = 13 \Rightarrow \hspace{0.3cm} \underline{P_1 = 6.5}\hspace{0.05cm}, \hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}. 4. Die Kanalkapazität gibt die maximale Transinformation an. Das Maximum liegt durch die bestmögliche Leistungsaufteilung gemäß der Teilaufgabe (c) bereits fest. Es gilt PX = 10: C_2\hspace{-0.15cm} = \hspace{-0.15cm} \frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right ) +\frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )=\\ = \hspace{-0.15cm} 1.453\,{\rm bit}+ 0.453\,{\rm bit} \hspace{0.15cm}\underline{= 1.906\,{\rm bit}} \hspace{0.05cm}.

5. Für PX = 3 erhält man bei gleicher Leistungsaufteilung (P1 = P2 = 1.5): I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) \hspace{-0.15cm} = \hspace{-0.15cm} \frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right ) +\frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right )=\\ = \hspace{-0.15cm} 0661\,{\rm bit}+ 0.230\,{\rm bit} \hspace{0.15cm}\underline{= 0.891\,{\rm bit}} \hspace{0.05cm}.

Leistungsaufteilung für PX = 3

Entsprechend dem Water–Filling–Algorithmus wird die gesamte zur Verfügung stehende Sendeleistung PX = 3 nun dem ersten Kanal zugewiesen: {P_1 = 3}\hspace{0.05cm}, \hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.

Damit erhält man für die Kanalkapazität: C_2 \hspace{-0.15cm} = \hspace{-0.15cm} \frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right ) +\frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=\\ = \hspace{-0.15cm} 1\,{\rm bit}+ 0\,{\rm bit} \hspace{0.15cm}\underline{= 1\,{\rm bit}} \hspace{0.05cm}. Während für PX = 10 die Differenz zwischen gleichmäßiger und bester Leistungsaufteilung nur 0.03 bit betragen hat, ist bei PX = 3 die Differenz größer, nämlich 0.109 bit. Bei noch größerem PX > 10 wird der Abstand zwischen gleichmäßiger und bestmöglicher Leistungsaufteilung noch geringer: Zum Beispiel beträgt die Differenz für PX = 100 nur noch 0.001 bit:

  • P1 = P2 = 50:

I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) \hspace{-0.15cm} = \hspace{-0.15cm} \frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right ) +\frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )=\\ = \hspace{-0.15cm} 2.836\,{\rm bit}+ 1.877\,{\rm bit} \hspace{0.15cm}\underline{= 4.713\,{\rm bit}} \hspace{0.05cm}.

  • P1 = 51.5, P2 = 48.5:

C_2\hspace{-0.15cm} = \hspace{-0.15cm} \frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right ) +\frac{1}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )=\\ = \hspace{-0.15cm} 2.857\,{\rm bit}+ 1.857\,{\rm bit} \hspace{0.15cm}\underline{= 4.714\,{\rm bit}} \hspace{0.05cm}.