Difference between revisions of "Aufgaben:Exercise 4.7Z: About the Water Filling Algorithm"

From LNTwww
Line 71: Line 71:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Nach den Ausführungen im  [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le |'''im Theorieteil''']] ist die Strategie &bdquo;Water&ndash;Filling&rdquo; &nbsp;&#8658;&nbsp; <u>Vorschlag 2</u> anzuwenden, wenn ungleiche Bedingungen vorliegen. <u>Lösungsvorschlag 3</u> ist aber ebenfalls richtig: Bei gleich guten Kanälen spricht nichts dagegen, alle <i>K</i> Kanäle mit der gleichen Leistung <i>P</i><sub>1</sub> = ... = <i>P<sub>K</sub></i> = <i>P<sub>X</sub></i>/<i>K</i> zu versorgen.
+
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
 +
*Nach den Ausführungen im  Theorieteil ist die Strategie &bdquo;Water&ndash;Filling&rdquo; &nbsp; &#8658; &nbsp; <u>Vorschlag 2</u> anzuwenden, wenn ungleiche Bedingungen vorliegen.
 +
* Der <u>Lösungsvorschlag 3</u> ist aber ebenfalls richtig: Bei gleich guten Kanälen spricht nichts dagegen, alle <i>K</i> Kanäle mit der gleichen Leistung &nbsp; &#8658; &nbsp; <i>P</i><sub>1</sub> = <i>P</i><sub>2</sub> = ... = <i>P<sub>K</sub></i> = <i>P<sub>X</sub></i>/<i>K</i> zu versorgen.
  
'''2.'''  Für die Transinformation gilt bei gleicher Leistungsaufteilung:
+
 
$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) \ =  \ \frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right )
+
'''(2)'''&nbsp; Für die Transinformation gilt bei gleicher Leistungsaufteilung:
+\frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=\\$$$$\hspace{-0.15cm} 1.292\,{\rm bit}+ 0.585\,{\rm bit}
+
:$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) \ =  \ {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right )
 +
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit}
 
\hspace{0.15cm}\underline{= 1.877\,{\rm bit}}
 
\hspace{0.15cm}\underline{= 1.877\,{\rm bit}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
[[File:P_ID2906__Inf_Z_4_7b_neu.png|right|frame|Leistungsaufteilung für <i>P<sub>X</sub></i> = 10]]
+
[[File:P_ID2906__Inf_Z_4_7b_neu.png|right|frame|Bestmögliche Aufteilung der Sendeleistung <i>P<sub>X</sub></i> = 10]]
'''3.'''   Entsprechend nebenstehender Skizze muss gelten:
+
'''(3)'''&nbsp;  Entsprechend nebenstehender Skizze muss gelten:
 
+
:$$P_2 = P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3\hspace{0.3cm}\text{wobei }\hspace{0.3cm}P_1 + P_2 = P_X = 10$$
$$P_2 \hspace{-0.15cm}  = \hspace{-0.15cm} P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3\hspace{0.05cm},$$$$P_1 + P_2 \hspace{-0.15cm} \hspace{-0.15cm}  P_X = 10$$
+
:$$\Rightarrow \hspace{0.3cm}
$$\Rightarrow \hspace{0.3cm}
+
P_1 + (P_1 -3) = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
P_1 + (P_1 -3) = 10
+
2 \cdot P_1 = 13 \hspace{0.3cm}
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
\Rightarrow \hspace{0.3cm}
2 \cdot P_1 = 13$$
 
$$\Rightarrow \hspace{0.3cm}
 
 
\underline{P_1 = 6.5}\hspace{0.05cm},
 
\underline{P_1 = 6.5}\hspace{0.05cm},
 
\hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.$$
 
\hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.$$
'''4.'''  Die Kanalkapazität gibt die maximale Transinformation an. Das Maximum liegt durch die bestmögliche Leistungsaufteilung gemäß der Teilaufgabe (c) bereits fest. Es gilt <i>P<sub>X</sub></i> = 10:
+
 
$$C_2\hspace{-0.15cm}  = \hspace{-0.15cm} \frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right )
+
'''(4)'''&nbsp; Die Kanalkapazität gibt die maximale Transinformation an. Das Maximum liegt durch die bestmögliche Leistungsaufteilung gemäß der Teilaufgabe (c) bereits fest. Mit <i>P<sub>X</sub></i> = 10 gilt:
+\frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )=\\
+
:$$C_2={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right )
=  \hspace{-0.15cm} 1.453\,{\rm bit}+ 0.453\,{\rm bit}
+
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )=1.453\,{\rm bit}+ 0.453\,{\rm bit}
 
\hspace{0.15cm}\underline{= 1.906\,{\rm bit}}
 
\hspace{0.15cm}\underline{= 1.906\,{\rm bit}}
\hspace{0.05cm}$$.
+
\hspace{0.05cm}.$$
  
'''5.'''  Für <i>P<sub>X</sub></i> = 3  erhält man bei gleicher Leistungsaufteilung (<i>P</i><sub>1</sub> = <i>P</i><sub>2</sub> = 1.5):
+
'''(5)'''&nbsp; Für <i>P<sub>X</sub></i> = 3  erhält man bei gleicher Leistungsaufteilung (<i>P</i><sub>1</sub> = <i>P</i><sub>2</sub> = 1.5):
$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) \hspace{-0.15cm}  = \hspace{-0.15cm} \frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right )
+
:$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) ={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right )
+\frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right )=\\
+
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right )= \text{...}  
  =  \hspace{-0.15cm} 0661\,{\rm bit}+ 0.230\,{\rm bit}
 
 
\hspace{0.15cm}\underline{= 0.891\,{\rm bit}}
 
\hspace{0.15cm}\underline{= 0.891\,{\rm bit}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
[[File:P_ID2907__Inf_Z_4_7e_neu.png|right|frame|Leistungsaufteilung für <i>P<sub>X</sub></i> = 3]]
+
[[File:P_ID2907__Inf_Z_4_7e_neu.png|right|frame|Bestmögliche Aufteilung der Sendeleistung <i>P<sub>X</sub></i> = 3]]
Entsprechend dem Water&ndash;Filling&ndash;Algorithmus wird die gesamte zur Verfügung stehende Sendeleistung <i>P<sub>X</sub></i> = 3 nun dem ersten Kanal zugewiesen:
+
'''(6)'''&nbsp;  Entsprechend dem Water&ndash;Filling&ndash;Algorithmus wird die gesamte zur Verfügung stehende Sendeleistung <i>P<sub>X</sub></i> = 3 nun vollständig dem ersten Kanal zugewiesen:
$${P_1 = 3}\hspace{0.05cm},
+
:$${P_1 = 3}\hspace{0.05cm},
 
\hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.$$
 
\hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.$$
  
 
Damit erhält man für die Kanalkapazität:
 
Damit erhält man für die Kanalkapazität:
$$C_2 \hspace{-0.15cm}  = \hspace{-0.15cm} \frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right )
+
:$$C_2 ={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right )
+\frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=\\
+
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit}
  =  \hspace{-0.15cm} 1\,{\rm bit}+ 0\,{\rm bit}
 
 
\hspace{0.15cm}\underline{= 1\,{\rm bit}}
 
\hspace{0.15cm}\underline{= 1\,{\rm bit}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Während für <i>P<sub>X</sub></i> = 10 die Differenz zwischen gleichmäßiger und bester Leistungsaufteilung nur 0.03 bit betragen hat, ist bei <i>P<sub>X</sub></i> = 3 die Differenz größer, nämlich  0.109 bit. Bei noch größerem <i>P<sub>X</sub></i> > 10 wird der Abstand zwischen gleichmäßiger und bestmöglicher Leistungsaufteilung noch geringer: Zum Beispiel beträgt die Differenz für <i>P<sub>X</sub></i> = 100 nur noch 0.001 bit:
+
 
:*<i>P</i><sub>1</sub> = <i>P</i><sub>2</sub> = 50:
+
''Weitere Anmerkungen'':
$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) \hspace{-0.15cm}  = \hspace{-0.15cm} \frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right )
+
*Während für <i>P<sub>X</sub></i> = 10 die Differenz zwischen gleichmäßiger und bester Leistungsaufteilung nur 0.03 bit betragen hat, ist bei <i>P<sub>X</sub></i> = 3 die Differenz größer, nämlich  0.109 bit.  
+\frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )=\\
+
*Bei noch größerem <i>P<sub>X</sub></i> > 10 wird der Abstand zwischen gleichmäßiger und bestmöglicher Leistungsaufteilung noch geringer.
  =  \hspace{-0.15cm} 2.836\,{\rm bit}+ 1.877\,{\rm bit}
+
 
 +
 
 +
Zum Beispiel beträgt die Differenz für <i>P<sub>X</sub></i> = 100 nur noch 0.001 bit, wie die folgende Rechnung zeigt:
 +
*Für <i>P</i><sub>1</sub> = <i>P</i><sub>2</sub> = 50 erhält man:
 +
:$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) = {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right )
 +
+{1}/{2}\cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit}
 
\hspace{0.15cm}\underline{= 4.713\,{\rm bit}}
 
\hspace{0.15cm}\underline{= 4.713\,{\rm bit}}
 
\hspace{0.05cm}.$$  
 
\hspace{0.05cm}.$$  
:*<i>P</i><sub>1</sub> = 51.5, <i>P</i><sub>2</sub> = 48.5:
+
*Dagegen erhält man bei bestmöglicher Aufteilung &nbsp; &#8658; &nbsp; <i>P</i><sub>1</sub> = 51.5, <i>P</i><sub>2</sub> = 48.5:
$$C_2\hspace{-0.15cm}  = \hspace{-0.15cm} \frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right )
+
:$$C_2 = {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right )
+\frac{1}{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )=\\
+
+{1}/{2}\cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit}
  =  \hspace{-0.15cm} 2.857\,{\rm bit}+ 1.857\,{\rm bit}
 
 
\hspace{0.15cm}\underline{= 4.714\,{\rm bit}}
 
\hspace{0.15cm}\underline{= 4.714\,{\rm bit}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$

Revision as of 16:27, 12 June 2017

Water–Filling–Algorithmus mit K = 4

Wir betrachten $K$ parallele Gaußsche Kanäle (AWGN) mit unterschiedlichen Störleistungen $\sigma_k^2$, wobei $1 \le k \le K$ gelten soll. Die Grafik verdeutlicht diese Konstellation am Beispiel $K = 4$.

Die Sendeleistung in den einzelnen Kanälen wird mit $P_k$ bezeichnet, deren Summe den vorgegebenen Wert $P_X$ nicht überschreiten darf:

$$P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$

Sind die Zufallsgrößen $X_1$, \text{...} , $X_K$ gaußisch, so kann für die (gesamte) Transinformation zwischen dem Eingang $X$ und dem Ausgang $Y$ geschrieben werden:

$$I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) = 1/2 \cdot \sum_{k= 1}^K \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm} {\rm Ergebnis\hspace{0.15cm} in \hspace{0.15cm} bit} \hspace{0.05cm}.$$

Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems, wobei sich die Maximierung auf die Aufteilung der Gesamtleistung $P_X$ auf die einzelnen Kanäle bezieht:

$$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$

Diese Maximierung kann mit dem Water–Filling–Algorithmus geschehen, der in obiger Grafik für $K = 4$ dargestellt ist. In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden, wobei von folgenden Voraussetzungen auszugehen ist:

  • Zwei parallele Gaußkanäle   ⇒   $K = 2$,
  • Normierte Störleistungen $\sigma_1^2 = 1$ und $\sigma_2^2 = 4$,
  • Normierte Sendeleistungen $P_X = 10$ bzw. $P_X = 3$.


Hinweise:


Fragebogen

1

Welche Strategien der Leistungszuteilung sind sinnvoll?

Einem stark gestörten Kanal $k$ (mit großer Störleistung $\sigma_k^2$ sollte eine große Nutzleistung $P_k$ zugewiesen werden.
Einem stark gestörten Kanal $k$ (mit großer Störleistung $\sigma_k^2$ sollte nur eine kleine Nutzleistung $P_k$ zugewiesen werden.
Bei $K$ gleich guten Kanälen   ⇒   $\sigma_1^2 = \text{...} = \sigma_K^2 = \sigma_N^2$ sollte die Leistung gleichmäßig verteilt werden.

2

Welche Transinformation $I(X_1, X_2; Y_1, Y_2)$ ergibt sich, wenn man die Sendeleistung $P_X = 10$ gleichmäßig auf beide Kanäle verteilt   ⇒   $P_1= P_2 = 5$?

$I(X_1, X_2; Y_1, Y_2) \ = \ $

$\ \rm bit$

3

Es gelte weiter $P_X = P_1 + P_2 = 10$. Welche optimale Leistungsaufteilung ergibt sich nach dem Water–Filling–Algorithmus?

$P_1 \ = \ $

$P_2 \ = \ $

4

Wie groß ist die Kanalkapazität für $K = 2$ und $P_X = 10$?

$C_2 \ = \ $

$\ \rm bit$

5

Welche Transinformation $I(X_1, X_2; Y_1, Y_2)$ ergibt sich, wenn man die Sendeleistung $P_X = 3$ gleichmäßig auf beide Kanäle verteilt   ⇒   $P_1= P_2 = 1.5$?

$I(X_1, X_2; Y_1, Y_2) \ = \ $

$\ \rm bit$

6

Wie groß ist die Kanalkapazität für $K = 2$ und $P_X = 3$?

$C_2 \ = \ $

$\ \rm bit$


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Nach den Ausführungen im Theorieteil ist die Strategie „Water–Filling”   ⇒   Vorschlag 2 anzuwenden, wenn ungleiche Bedingungen vorliegen.
  • Der Lösungsvorschlag 3 ist aber ebenfalls richtig: Bei gleich guten Kanälen spricht nichts dagegen, alle K Kanäle mit der gleichen Leistung   ⇒   P1 = P2 = ... = PK = PX/K zu versorgen.


(2)  Für die Transinformation gilt bei gleicher Leistungsaufteilung:

$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) \ = \ {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit} \hspace{0.15cm}\underline{= 1.877\,{\rm bit}} \hspace{0.05cm}.$$
Bestmögliche Aufteilung der Sendeleistung PX = 10

(3)  Entsprechend nebenstehender Skizze muss gelten:

$$P_2 = P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3\hspace{0.3cm}\text{wobei }\hspace{0.3cm}P_1 + P_2 = P_X = 10$$
$$\Rightarrow \hspace{0.3cm} P_1 + (P_1 -3) = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot P_1 = 13 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{P_1 = 6.5}\hspace{0.05cm}, \hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.$$

(4)  Die Kanalkapazität gibt die maximale Transinformation an. Das Maximum liegt durch die bestmögliche Leistungsaufteilung gemäß der Teilaufgabe (c) bereits fest. Mit PX = 10 gilt:

$$C_2={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )=1.453\,{\rm bit}+ 0.453\,{\rm bit} \hspace{0.15cm}\underline{= 1.906\,{\rm bit}} \hspace{0.05cm}.$$

(5)  Für PX = 3 erhält man bei gleicher Leistungsaufteilung (P1 = P2 = 1.5):

$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right )= \text{...} \hspace{0.15cm}\underline{= 0.891\,{\rm bit}} \hspace{0.05cm}.$$
Bestmögliche Aufteilung der Sendeleistung PX = 3

(6)  Entsprechend dem Water–Filling–Algorithmus wird die gesamte zur Verfügung stehende Sendeleistung PX = 3 nun vollständig dem ersten Kanal zugewiesen:

$${P_1 = 3}\hspace{0.05cm}, \hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.$$

Damit erhält man für die Kanalkapazität:

$$C_2 ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit} \hspace{0.15cm}\underline{= 1\,{\rm bit}} \hspace{0.05cm}.$$

Weitere Anmerkungen:

  • Während für PX = 10 die Differenz zwischen gleichmäßiger und bester Leistungsaufteilung nur 0.03 bit betragen hat, ist bei PX = 3 die Differenz größer, nämlich 0.109 bit.
  • Bei noch größerem PX > 10 wird der Abstand zwischen gleichmäßiger und bestmöglicher Leistungsaufteilung noch geringer.


Zum Beispiel beträgt die Differenz für PX = 100 nur noch 0.001 bit, wie die folgende Rechnung zeigt:

  • Für P1 = P2 = 50 erhält man:
$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit} \hspace{0.15cm}\underline{= 4.713\,{\rm bit}} \hspace{0.05cm}.$$
  • Dagegen erhält man bei bestmöglicher Aufteilung   ⇒   P1 = 51.5, P2 = 48.5:
$$C_2 = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit} \hspace{0.15cm}\underline{= 4.714\,{\rm bit}} \hspace{0.05cm}.$$