Difference between revisions of "Aufgaben:Exercise 1.2: Distortions? Or no Distortion?"

From LNTwww
Line 18: Line 18:
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
 
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Qualitätskriterien#Signal.E2.80.93zu.E2.80.93St.C3.B6r.E2.80.93Leistungsverh.C3.A4ltnis|Signal-zu-Stör-Leistungsverhältnis]] und auf das Kapitel [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]] im Buch „Lineare zeitinvariante Systeme”.
 
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Qualitätskriterien#Signal.E2.80.93zu.E2.80.93St.C3.B6r.E2.80.93Leistungsverh.C3.A4ltnis|Signal-zu-Stör-Leistungsverhältnis]] und auf das Kapitel [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]] im Buch „Lineare zeitinvariante Systeme”.
 +
*Bei nichtlinearen Verzerrungen ist das Sinken–SNR $ρ_v = 1/K^2$, wobei der Klirrfaktor $K$ das Verhältnis der Effektivwerte aller Oberwellen zum Effektivwert der Grundfrequenz angibt.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  
Line 58: Line 59:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' $S_1$ könnte durchaus ein ideales System sein, nämlich dann, wenn für alle Frequenzen $f_N$ die Bedingung $υ(t) = q(t)$ erfüllt wäre. Auch die zweite Alternative ist möglich, da das ideale System ein Sonderfall der verzerrungsfreien Systeme darstellt. Würde bei einer anderen Frequenz $f = f_N$ die Bedingung $υ(t) = q(t)$ allerdings nicht erfüllt, so würde ein linear verzerrendes System vorliegen, dessen Frequenzgang bei der Frequenz $f_N$ zufällig gleich 1 wäre. Dagegen kann ein nichtlinear verzerrendes System aufgrund fehlender Oberwellen ausgeschlossen werden. Richtig sind somit die Lösungsvorschläge 1, 2 und 3.
+
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1, 2 und 3</u>:
 +
*Das System $S_1$ könnte durchaus ein ideales System sein, nämlich dann, wenn für alle Frequenzen $f_{\rm N}$ die Bedingung $v(t) = q(t)$ erfüllt wäre.  
 +
*Auch die zweite Alternative ist möglich, da das ideale System ein Sonderfall der verzerrungsfreien Systeme darstellt.  
 +
*Würde bei einer anderen Nachrichtenfrequenz $f_{\rm N} \ne 1$ kHz die Bedingung $v(t) = q(t)$ allerdings nicht erfüllt, so würde ein linear verzerrendes System vorliegen, dessen Frequenzgang bei der Frequenz $f_{\rm N}$ zufällig gleich 1 wäre.  
 +
*Dagegen kann ein nichtlinear verzerrendes System (Vorschlag 4) aufgrund fehlender Oberwellen ausgeschlossen werden.  
  
  
'''2.'''Entsprechend den Ausführungen im Kapitel 2.3 von „Signaldarstellung” gelten folgende Gleichungen:
+
'''(2)'''&nbsp; Entsprechend den Ausführungen im Kapitel „Harmonische Schwingung” im Buch „Signaldarstellung” gelten folgende Gleichungen:
$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)$$
+
:$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm}
$$\Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm}\frac {A}{B}\hspace{0.05cm}$$
+
\Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$
 
Angewandt auf das vorliegende Beispiel erhält man
 
Angewandt auf das vorliegende Beispiel erhält man
$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}$$
+
:$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$
Der Dämpfungsfaktor des Systems hat somit den Wert $α = 1.414/2 = 0.707$. Für die Phase gilt:
+
Der Dämpfungsfaktor des Systems hat somit den Wert $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, und für die Phase gilt:
$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = \frac {\pi}{4}\hspace{0.05cm}.$$
+
:$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = {\pi}/{4}\hspace{0.05cm}.$$
Die Umformung $cos(ω_N · t – φ) = cos(ω_N · (t – τ))$ erlaubt Aussagen über die Laufzeit:
+
Die Umformung $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$ erlaubt Aussagen über die Laufzeit:
$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm \mu s}}\hspace{0.05cm}.$$
+
:$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm \mu s}}\hspace{0.05cm}.$$
  
  
'''3.'''Das System S2 ist nach den Ausführungen zur Teilaufgabe a) weder ideal noch nichtlinear verzerrend. Dagegen sind die Alternativen 2 und 3 möglich, je nachdem, ob die berechneten Werte von $α$ und $τ$ für alle Frequenzen erhalten bleiben oder nicht. Mit einer einzigen Messung bei nur einer Frequenz kann diese Frage nicht geklärt werden.
+
'''(3)'''&nbsp; Richtig sind<u>die Lösungsvorschläge 2 und 3</u>:
 +
*Das System $S_2$ ist nach den Ausführungen zur Teilaufgabe (1) weder ideal noch nichtlinear verzerrend.  
 +
*Dagegen sind die Alternativen 2 und 3 möglich, je nachdem, ob die berechneten Werte von $α$ und $τ$ für alle Frequenzen erhalten bleiben oder nicht.  
 +
*Mit einer einzigen Messung bei nur einer Frequenz kann allerdings diese Frage nicht geklärt werden.
  
  
'''4.'''Das Signal $υ_3(t)$ beinhaltet eine Oberwelle dritter Ordnung. Deshalb ist die Verzerrung nichtlinear.
+
'''(4)'''&nbsp; Das Signal $v_3(t)$ beinhaltet eine Oberwelle dritter Ordnung. Deshalb ist die Verzerrung nichtlinear &nbsp; &rArr; &nbsp;<u>Lösungsvorschlag 2</u>.
  
  
'''5.'''Mit den Amplituden $A_1 = 1.5 V$ und $A_3 = –0.3 V$ erhält man für den Klirrfaktor:
+
'''(5)'''&nbsp; Mit den Amplituden $A_1 = 1.5 \ \rm V$ und $A_3 = -0.3\ \rm  V$ erhält man für den Klirrfaktor:
$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
+
:$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
Deshalb beträgt das Sinken–$\text{SNR}$ entsprechend der angegebenen Gleichung $ρ_{υ3} = 1/K_3^{ 2 } = 25$. Zum gleichen Ergebnis kommt man nach der allgemeinen Berechnung. Aus den Amplituden von Quellensignal und Grundwelle des Sinkensignals erhält man für den frequenzunabhängigen Dämpfungsfaktor:
+
Deshalb beträgt das Sinken–SNR entsprechend der angegebenen Gleichung $ρ_{v3} = 1/K_3^{ 2 } = 25$.  
$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
+
 
Das von den nichtlinearen Verzerrungen herrührende Fehlersignal lautet deshalb:
+
Zum gleichen Ergebnis kommt man nach der allgemeinen Berechnung. Aus den Amplituden von Quellensignal und Grundwelle des Sinkensignals erhält man für den frequenzunabhängigen Dämpfungsfaktor:
$$\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
+
:$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
Damit ergibt sich die Verzerrungsleistung:
+
Das von den nichtlinearen Verzerrungen herrührende Fehlersignal lautet deshalb: &nbsp; $\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$ Damit ergibt sich die Verzerrungsleistung:
$$P_{\varepsilon 3}= \frac{1}{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
+
:$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
 
Mit der Leistung des Quellensignals,
 
Mit der Leistung des Quellensignals,
$$P_{q}= \frac{1}{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
+
$$P_{q}= {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
erhält man unter Berücksichtigung des Dämpfungsfaktors:
+
erhält man unter Berücksichtigung des gerade berechneten Dämpfungsfaktors $ \alpha = 0.75 $:
$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$
+
:$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$
  
  

Revision as of 15:41, 19 June 2017

Betrachtete Sinkensignale für das gegebene Eingangssignal q(t)

Die drei Nachrichtensysteme $S_1$, $S_2$ und $S_3$ werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal mit der Signalfrequenz $f_{\rm N} = 1$ kHz angelegt:

$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$

Gemessen werden die Signale am Ausgang der drei Systeme, die in der Grafik dargestellt sind:

$$v_1(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
$$v_2(t) = 1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t + 1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
$$v_3(t)= 1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$

Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Qualitätskriterien.
  • Bezug genommen wird insbesondere auf die Seite Signal-zu-Stör-Leistungsverhältnis und auf das Kapitel Nichtlineare Verzerrungen im Buch „Lineare zeitinvariante Systeme”.
  • Bei nichtlinearen Verzerrungen ist das Sinken–SNR $ρ_v = 1/K^2$, wobei der Klirrfaktor $K$ das Verhältnis der Effektivwerte aller Oberwellen zum Effektivwert der Grundfrequenz angibt.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Welche Aussagen sind nach dieser Messung über das System $S_1$ möglich?

$S_1$ könnte ein ideales System sein.
$S_1$ könnte ein verzerrungsfreies System sein.
$S_1$ könnte ein linear verzerrendes System sein.
$S_1$ könnte ein nichtlinear verzerrendes System sein.

2

Schreiben Sie das zweite Signal in der Form $v_2(t) = α · q(t - τ)$ und bestimmen Sie dessen Kenngrößen.

$\alpha \ = \ $

$τ \ = \ $

$\ \rm μs$

3

Welche Aussagen sind nach dieser Messung über das System $S_2$ möglich?

$S_2$ könnte ein ideales System sein.
$S_2$ könnte ein verzerrungsfreies System sein.
$S_2$ könnte ein linear verzerrendes System sein.
$S_2$ könnte ein nichtlinear verzerrendes System sein.

4

Von welcher Art sind die Verzerrungen beim System $S_3$?

Es handelt sich um lineare Verzerrungen.
Es handelt sich um nichtlineare Verzerrungen.

5

Berechnen Sie das Sinken–SNR $ρ_{v3}$von System $S_3$.

$ρ_{v3} \ = \ $


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1, 2 und 3:

  • Das System $S_1$ könnte durchaus ein ideales System sein, nämlich dann, wenn für alle Frequenzen $f_{\rm N}$ die Bedingung $v(t) = q(t)$ erfüllt wäre.
  • Auch die zweite Alternative ist möglich, da das ideale System ein Sonderfall der verzerrungsfreien Systeme darstellt.
  • Würde bei einer anderen Nachrichtenfrequenz $f_{\rm N} \ne 1$ kHz die Bedingung $v(t) = q(t)$ allerdings nicht erfüllt, so würde ein linear verzerrendes System vorliegen, dessen Frequenzgang bei der Frequenz $f_{\rm N}$ zufällig gleich 1 wäre.
  • Dagegen kann ein nichtlinear verzerrendes System (Vorschlag 4) aufgrund fehlender Oberwellen ausgeschlossen werden.


(2)  Entsprechend den Ausführungen im Kapitel „Harmonische Schwingung” im Buch „Signaldarstellung” gelten folgende Gleichungen:

$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$

Angewandt auf das vorliegende Beispiel erhält man

$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$

Der Dämpfungsfaktor des Systems hat somit den Wert $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, und für die Phase gilt:

$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = {\pi}/{4}\hspace{0.05cm}.$$

Die Umformung $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$ erlaubt Aussagen über die Laufzeit:

$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm \mu s}}\hspace{0.05cm}.$$


(3)  Richtig sinddie Lösungsvorschläge 2 und 3:

  • Das System $S_2$ ist nach den Ausführungen zur Teilaufgabe (1) weder ideal noch nichtlinear verzerrend.
  • Dagegen sind die Alternativen 2 und 3 möglich, je nachdem, ob die berechneten Werte von $α$ und $τ$ für alle Frequenzen erhalten bleiben oder nicht.
  • Mit einer einzigen Messung bei nur einer Frequenz kann allerdings diese Frage nicht geklärt werden.


(4)  Das Signal $v_3(t)$ beinhaltet eine Oberwelle dritter Ordnung. Deshalb ist die Verzerrung nichtlinear   ⇒  Lösungsvorschlag 2.


(5)  Mit den Amplituden $A_1 = 1.5 \ \rm V$ und $A_3 = -0.3\ \rm V$ erhält man für den Klirrfaktor:

$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$

Deshalb beträgt das Sinken–SNR entsprechend der angegebenen Gleichung $ρ_{v3} = 1/K_3^{ 2 } = 25$.

Zum gleichen Ergebnis kommt man nach der allgemeinen Berechnung. Aus den Amplituden von Quellensignal und Grundwelle des Sinkensignals erhält man für den frequenzunabhängigen Dämpfungsfaktor:

$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$

Das von den nichtlinearen Verzerrungen herrührende Fehlersignal lautet deshalb:   $\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$ Damit ergibt sich die Verzerrungsleistung:

$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$

Mit der Leistung des Quellensignals, $$P_{q}= {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$ erhält man unter Berücksichtigung des gerade berechneten Dämpfungsfaktors $ \alpha = 0.75 $:

$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$